mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 11:40:18 +01:00
Robosuite exploration (#478)
* Add Robosuite parameters for all env types + initialize env flow * Init flow done * Rest of Environment API complete for RobosuiteEnvironment * RobosuiteEnvironment changes * Observation stacking filter * Add proper frame_skip in addition to control_freq * Hardcode Coach rendering to 'frontview' camera * Robosuite_Lift_DDPG preset + Robosuite env updates * Move observation stacking filter from env to preset * Pre-process observation - concatenate depth map (if exists) to image and object state (if exists) to robot state * Preset parameters based on Surreal DDPG parameters, taken from: https://github.com/SurrealAI/surreal/blob/master/surreal/main/ddpg_configs.py * RobosuiteEnvironment fixes - working now with PyGame rendering * Preset minor modifications * ObservationStackingFilter - option to concat non-vector observations * Consider frame skip when setting horizon in robosuite env * Robosuite lift preset - update heatup length and training interval * Robosuite env - change control_freq to 10 to match Surreal usage * Robosuite clipped PPO preset * Distribute multiple workers (-n #) over multiple GPUs * Clipped PPO memory optimization from @shadiendrawis * Fixes to evaluation only workers * RoboSuite_ClippedPPO: Update training interval * Undo last commit (update training interval) * Fix "doube-negative" if conditions * multi-agent single-trainer clipped ppo training with cartpole * cleanups (not done yet) + ~tuned hyper-params for mast * Switch to Robosuite v1 APIs * Change presets to IK controller * more cleanups + enabling evaluation worker + better logging * RoboSuite_Lift_ClippedPPO updates * Fix major bug in obs normalization filter setup * Reduce coupling between Robosuite API and Coach environment * Now only non task-specific parameters are explicitly defined in Coach * Removed a bunch of enums of Robosuite elements, using simple strings instead * With this change new environments/robots/controllers in Robosuite can be used immediately in Coach * MAST: better logging of actor-trainer interaction + bug fixes + performance improvements. Still missing: fixed pubsub for obs normalization running stats + logging for trainer signals * lstm support for ppo * setting JOINT VELOCITY action space by default + fix for EveryNEpisodes video dump filter + new TaskIDDumpFilter + allowing or between video dump filters * Separate Robosuite clipped PPO preset for the non-MAST case * Add flatten layer to architectures and use it in Robosuite presets This is required for embedders that mix conv and dense TODO: Add MXNet implementation * publishing running_stats together with the published policy + hyper-param for when to publish a policy + cleanups * bug-fix for memory leak in MAST * Bugfix: Return value in TF BatchnormActivationDropout.to_tf_instance * Explicit activations in embedder scheme so there's no ReLU after flatten * Add clipped PPO heads with configurable dense layers at the beginning * This is a workaround needed to mimic Surreal-PPO, where the CNN and LSTM are shared between actor and critic but the FC layers are not shared * Added a "SchemeBuilder" class, currently only used for the new heads but we can change Middleware and Embedder implementations to use it as well * Video dump setting fix in basic preset * logging screen output to file * coach to start the redis-server for a MAST run * trainer drops off-policy data + old policy in ClippedPPO updates only after policy was published + logging free memory stats + actors check for a new policy only at the beginning of a new episode + fixed a bug where the trainer was logging "Training Reward = 0", causing dashboard to incorrectly display the signal * Add missing set_internal_state function in TFSharedRunningStats * Robosuite preset - use SingleLevelSelect instead of hard-coded level * policy ID published directly on Redis * Small fix when writing to log file * Major bugfix in Robosuite presets - pass dense sizes to heads * RoboSuite_Lift_ClippedPPO hyper-params update * add horizon and value bootstrap to GAE calculation, fix A3C with LSTM * adam hyper-params from mujoco * updated MAST preset with IK_POSE_POS controller * configurable initialization for policy stdev + custom extra noise per actor + logging of policy stdev to dashboard * values loss weighting of 0.5 * minor fixes + presets * bug-fix for MAST where the old policy in the trainer had kept updating every training iter while it should only update after every policy publish * bug-fix: reset_internal_state was not called by the trainer * bug-fixes in the lstm flow + some hyper-param adjustments for CartPole_ClippedPPO_LSTM -> training and sometimes reaches 200 * adding back the horizon hyper-param - a messy commit * another bug-fix missing from prev commit * set control_freq=2 to match action_scale 0.125 * ClippedPPO with MAST cleanups and some preps for TD3 with MAST * TD3 presets. RoboSuite_Lift_TD3 seems to work well with multi-process runs (-n 8) * setting termination on collision to be on by default * bug-fix following prev-prev commit * initial cube exploration environment with TD3 commit * bug fix + minor refactoring * several parameter changes and RND debugging * Robosuite Gym wrapper + Rename TD3_Random* -> Random* * algorithm update * Add RoboSuite v1 env + presets (to eventually replace non-v1 ones) * Remove grasping presets, keep only V1 exp. presets (w/o V1 tag) * Keep just robosuite V1 env as the 'robosuite_environment' module * Exclude Robosuite and MAST presets from integration tests * Exclude LSTM and MAST presets from golden tests * Fix mistakenly removed import * Revert debug changes in ReaderWriterLock * Try another way to exclude LSTM/MAST golden tests * Remove debug prints * Remove PreDense heads, unused in the end * Missed removing an instance of PreDense head * Remove MAST, not required for this PR * Undo unused concat option in ObservationStackingFilter * Remove LSTM updates, not required in this PR * Update README.md * code changes for the exploration flow to work with robosuite master branch * code cleanup + documentation * jupyter tutorial for the goal-based exploration + scatter plot * typo fix * Update README.md * seprate parameter for the obs-goal observation + small fixes * code clarity fixes * adjustment in tutorial 5 * Update tutorial * Update tutorial Co-authored-by: Guy Jacob <guy.jacob@intel.com> Co-authored-by: Gal Leibovich <gal.leibovich@intel.com> Co-authored-by: shadi.endrawis <sendrawi@aipg-ra-skx-03.ra.intel.com>
This commit is contained in:
@@ -37,7 +37,8 @@ import subprocess
|
||||
from glob import glob
|
||||
|
||||
from rl_coach.graph_managers.graph_manager import HumanPlayScheduleParameters, GraphManager
|
||||
from rl_coach.utils import list_all_presets, short_dynamic_import, get_open_port, SharedMemoryScratchPad, get_base_dir
|
||||
from rl_coach.utils import list_all_presets, short_dynamic_import, get_open_port, SharedMemoryScratchPad, \
|
||||
get_base_dir, set_gpu
|
||||
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
|
||||
from rl_coach.environments.environment import SingleLevelSelection
|
||||
from rl_coach.memories.backend.redis import RedisPubSubMemoryBackendParameters
|
||||
@@ -49,12 +50,40 @@ from rl_coach.data_stores.redis_data_store import RedisDataStoreParameters
|
||||
from rl_coach.data_stores.data_store_impl import get_data_store, construct_data_store_params
|
||||
from rl_coach.training_worker import training_worker
|
||||
from rl_coach.rollout_worker import rollout_worker
|
||||
from rl_coach.schedules import *
|
||||
from rl_coach.exploration_policies.e_greedy import *
|
||||
|
||||
|
||||
if len(set(failed_imports)) > 0:
|
||||
screen.warning("Warning: failed to import the following packages - {}".format(', '.join(set(failed_imports))))
|
||||
|
||||
|
||||
def _get_cuda_available_devices():
|
||||
import ctypes
|
||||
|
||||
try:
|
||||
devices = os.environ['CUDA_VISIBLE_DEVICES'].split(',')
|
||||
return [] if devices[0] == '' else [int(i) for i in devices]
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
try:
|
||||
cuda_lib = ctypes.CDLL('libcuda.so')
|
||||
except OSError:
|
||||
return []
|
||||
|
||||
CUDA_SUCCESS = 0
|
||||
|
||||
num_gpus = ctypes.c_int()
|
||||
result = cuda_lib.cuInit(0)
|
||||
if result != CUDA_SUCCESS:
|
||||
return []
|
||||
result = cuda_lib.cuDeviceGetCount(ctypes.byref(num_gpus))
|
||||
if result != CUDA_SUCCESS:
|
||||
return []
|
||||
return list(range(num_gpus.value))
|
||||
|
||||
|
||||
def add_items_to_dict(target_dict, source_dict):
|
||||
updated_task_parameters = copy.copy(source_dict)
|
||||
updated_task_parameters.update(target_dict)
|
||||
@@ -215,6 +244,8 @@ class CoachLauncher(object):
|
||||
and handle absolutely everything for a job.
|
||||
"""
|
||||
|
||||
gpus = _get_cuda_available_devices()
|
||||
|
||||
def launch(self):
|
||||
"""
|
||||
Main entry point for the class, and the standard way to run coach from the command line.
|
||||
@@ -440,6 +471,9 @@ class CoachLauncher(object):
|
||||
screen.warning("Exporting ONNX graphs requires setting the --checkpoint_save_secs flag. "
|
||||
"The --export_onnx_graph will have no effect.")
|
||||
|
||||
if args.use_cpu or not CoachLauncher.gpus:
|
||||
CoachLauncher.gpus = [None]
|
||||
|
||||
return args
|
||||
|
||||
def get_argument_parser(self) -> argparse.ArgumentParser:
|
||||
@@ -609,9 +643,9 @@ class CoachLauncher(object):
|
||||
|
||||
# Single-threaded runs
|
||||
if args.num_workers == 1:
|
||||
self.start_single_threaded(task_parameters, graph_manager, args)
|
||||
self.start_single_process(task_parameters, graph_manager, args)
|
||||
else:
|
||||
self.start_multi_threaded(graph_manager, args)
|
||||
self.start_multi_process(graph_manager, args)
|
||||
|
||||
@staticmethod
|
||||
def create_task_parameters(graph_manager: 'GraphManager', args: argparse.Namespace):
|
||||
@@ -669,12 +703,12 @@ class CoachLauncher(object):
|
||||
return task_parameters
|
||||
|
||||
@staticmethod
|
||||
def start_single_threaded(task_parameters, graph_manager: 'GraphManager', args: argparse.Namespace):
|
||||
def start_single_process(task_parameters, graph_manager: 'GraphManager', args: argparse.Namespace):
|
||||
# Start the training or evaluation
|
||||
start_graph(graph_manager=graph_manager, task_parameters=task_parameters)
|
||||
|
||||
@staticmethod
|
||||
def start_multi_threaded(graph_manager: 'GraphManager', args: argparse.Namespace):
|
||||
def start_multi_process(graph_manager: 'GraphManager', args: argparse.Namespace):
|
||||
total_tasks = args.num_workers
|
||||
if args.evaluation_worker:
|
||||
total_tasks += 1
|
||||
@@ -695,7 +729,8 @@ class CoachLauncher(object):
|
||||
"and not from a file. ")
|
||||
|
||||
def start_distributed_task(job_type, task_index, evaluation_worker=False,
|
||||
shared_memory_scratchpad=shared_memory_scratchpad):
|
||||
shared_memory_scratchpad=shared_memory_scratchpad,
|
||||
gpu_id=None):
|
||||
task_parameters = DistributedTaskParameters(
|
||||
framework_type=args.framework,
|
||||
parameters_server_hosts=ps_hosts,
|
||||
@@ -715,6 +750,8 @@ class CoachLauncher(object):
|
||||
export_onnx_graph=args.export_onnx_graph,
|
||||
apply_stop_condition=args.apply_stop_condition
|
||||
)
|
||||
if gpu_id is not None:
|
||||
set_gpu(gpu_id)
|
||||
# we assume that only the evaluation workers are rendering
|
||||
graph_manager.visualization_parameters.render = args.render and evaluation_worker
|
||||
p = Process(target=start_graph, args=(graph_manager, task_parameters))
|
||||
@@ -723,25 +760,30 @@ class CoachLauncher(object):
|
||||
return p
|
||||
|
||||
# parameter server
|
||||
parameter_server = start_distributed_task("ps", 0)
|
||||
parameter_server = start_distributed_task("ps", 0, gpu_id=CoachLauncher.gpus[0])
|
||||
|
||||
# training workers
|
||||
# wait a bit before spawning the non chief workers in order to make sure the session is already created
|
||||
curr_gpu_idx = 0
|
||||
workers = []
|
||||
workers.append(start_distributed_task("worker", 0))
|
||||
workers.append(start_distributed_task("worker", 0, gpu_id=CoachLauncher.gpus[curr_gpu_idx]))
|
||||
|
||||
time.sleep(2)
|
||||
for task_index in range(1, args.num_workers):
|
||||
workers.append(start_distributed_task("worker", task_index))
|
||||
curr_gpu_idx = (curr_gpu_idx + 1) % len(CoachLauncher.gpus)
|
||||
workers.append(start_distributed_task("worker", task_index, gpu_id=CoachLauncher.gpus[curr_gpu_idx]))
|
||||
|
||||
# evaluation worker
|
||||
if args.evaluation_worker or args.render:
|
||||
evaluation_worker = start_distributed_task("worker", args.num_workers, evaluation_worker=True)
|
||||
curr_gpu_idx = (curr_gpu_idx + 1) % len(CoachLauncher.gpus)
|
||||
evaluation_worker = start_distributed_task("worker", args.num_workers, evaluation_worker=True,
|
||||
gpu_id=CoachLauncher.gpus[curr_gpu_idx])
|
||||
|
||||
# wait for all workers
|
||||
[w.join() for w in workers]
|
||||
if args.evaluation_worker:
|
||||
evaluation_worker.terminate()
|
||||
parameter_server.terminate()
|
||||
|
||||
|
||||
class CoachInterface(CoachLauncher):
|
||||
|
||||
Reference in New Issue
Block a user