mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
Robosuite exploration (#478)
* Add Robosuite parameters for all env types + initialize env flow * Init flow done * Rest of Environment API complete for RobosuiteEnvironment * RobosuiteEnvironment changes * Observation stacking filter * Add proper frame_skip in addition to control_freq * Hardcode Coach rendering to 'frontview' camera * Robosuite_Lift_DDPG preset + Robosuite env updates * Move observation stacking filter from env to preset * Pre-process observation - concatenate depth map (if exists) to image and object state (if exists) to robot state * Preset parameters based on Surreal DDPG parameters, taken from: https://github.com/SurrealAI/surreal/blob/master/surreal/main/ddpg_configs.py * RobosuiteEnvironment fixes - working now with PyGame rendering * Preset minor modifications * ObservationStackingFilter - option to concat non-vector observations * Consider frame skip when setting horizon in robosuite env * Robosuite lift preset - update heatup length and training interval * Robosuite env - change control_freq to 10 to match Surreal usage * Robosuite clipped PPO preset * Distribute multiple workers (-n #) over multiple GPUs * Clipped PPO memory optimization from @shadiendrawis * Fixes to evaluation only workers * RoboSuite_ClippedPPO: Update training interval * Undo last commit (update training interval) * Fix "doube-negative" if conditions * multi-agent single-trainer clipped ppo training with cartpole * cleanups (not done yet) + ~tuned hyper-params for mast * Switch to Robosuite v1 APIs * Change presets to IK controller * more cleanups + enabling evaluation worker + better logging * RoboSuite_Lift_ClippedPPO updates * Fix major bug in obs normalization filter setup * Reduce coupling between Robosuite API and Coach environment * Now only non task-specific parameters are explicitly defined in Coach * Removed a bunch of enums of Robosuite elements, using simple strings instead * With this change new environments/robots/controllers in Robosuite can be used immediately in Coach * MAST: better logging of actor-trainer interaction + bug fixes + performance improvements. Still missing: fixed pubsub for obs normalization running stats + logging for trainer signals * lstm support for ppo * setting JOINT VELOCITY action space by default + fix for EveryNEpisodes video dump filter + new TaskIDDumpFilter + allowing or between video dump filters * Separate Robosuite clipped PPO preset for the non-MAST case * Add flatten layer to architectures and use it in Robosuite presets This is required for embedders that mix conv and dense TODO: Add MXNet implementation * publishing running_stats together with the published policy + hyper-param for when to publish a policy + cleanups * bug-fix for memory leak in MAST * Bugfix: Return value in TF BatchnormActivationDropout.to_tf_instance * Explicit activations in embedder scheme so there's no ReLU after flatten * Add clipped PPO heads with configurable dense layers at the beginning * This is a workaround needed to mimic Surreal-PPO, where the CNN and LSTM are shared between actor and critic but the FC layers are not shared * Added a "SchemeBuilder" class, currently only used for the new heads but we can change Middleware and Embedder implementations to use it as well * Video dump setting fix in basic preset * logging screen output to file * coach to start the redis-server for a MAST run * trainer drops off-policy data + old policy in ClippedPPO updates only after policy was published + logging free memory stats + actors check for a new policy only at the beginning of a new episode + fixed a bug where the trainer was logging "Training Reward = 0", causing dashboard to incorrectly display the signal * Add missing set_internal_state function in TFSharedRunningStats * Robosuite preset - use SingleLevelSelect instead of hard-coded level * policy ID published directly on Redis * Small fix when writing to log file * Major bugfix in Robosuite presets - pass dense sizes to heads * RoboSuite_Lift_ClippedPPO hyper-params update * add horizon and value bootstrap to GAE calculation, fix A3C with LSTM * adam hyper-params from mujoco * updated MAST preset with IK_POSE_POS controller * configurable initialization for policy stdev + custom extra noise per actor + logging of policy stdev to dashboard * values loss weighting of 0.5 * minor fixes + presets * bug-fix for MAST where the old policy in the trainer had kept updating every training iter while it should only update after every policy publish * bug-fix: reset_internal_state was not called by the trainer * bug-fixes in the lstm flow + some hyper-param adjustments for CartPole_ClippedPPO_LSTM -> training and sometimes reaches 200 * adding back the horizon hyper-param - a messy commit * another bug-fix missing from prev commit * set control_freq=2 to match action_scale 0.125 * ClippedPPO with MAST cleanups and some preps for TD3 with MAST * TD3 presets. RoboSuite_Lift_TD3 seems to work well with multi-process runs (-n 8) * setting termination on collision to be on by default * bug-fix following prev-prev commit * initial cube exploration environment with TD3 commit * bug fix + minor refactoring * several parameter changes and RND debugging * Robosuite Gym wrapper + Rename TD3_Random* -> Random* * algorithm update * Add RoboSuite v1 env + presets (to eventually replace non-v1 ones) * Remove grasping presets, keep only V1 exp. presets (w/o V1 tag) * Keep just robosuite V1 env as the 'robosuite_environment' module * Exclude Robosuite and MAST presets from integration tests * Exclude LSTM and MAST presets from golden tests * Fix mistakenly removed import * Revert debug changes in ReaderWriterLock * Try another way to exclude LSTM/MAST golden tests * Remove debug prints * Remove PreDense heads, unused in the end * Missed removing an instance of PreDense head * Remove MAST, not required for this PR * Undo unused concat option in ObservationStackingFilter * Remove LSTM updates, not required in this PR * Update README.md * code changes for the exploration flow to work with robosuite master branch * code cleanup + documentation * jupyter tutorial for the goal-based exploration + scatter plot * typo fix * Update README.md * seprate parameter for the obs-goal observation + small fixes * code clarity fixes * adjustment in tutorial 5 * Update tutorial * Update tutorial Co-authored-by: Guy Jacob <guy.jacob@intel.com> Co-authored-by: Gal Leibovich <gal.leibovich@intel.com> Co-authored-by: shadi.endrawis <sendrawi@aipg-ra-skx-03.ra.intel.com>
This commit is contained in:
321
rl_coach/environments/robosuite_environment.py
Normal file
321
rl_coach/environments/robosuite_environment.py
Normal file
@@ -0,0 +1,321 @@
|
||||
#
|
||||
# Copyright (c) 2020 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from typing import Union ,Dict, Any
|
||||
from enum import Enum, Flag, auto
|
||||
from copy import deepcopy
|
||||
import numpy as np
|
||||
import random
|
||||
from collections import namedtuple
|
||||
|
||||
try:
|
||||
import robosuite
|
||||
from robosuite.wrappers import Wrapper, DomainRandomizationWrapper
|
||||
except ImportError:
|
||||
from rl_coach.logger import failed_imports
|
||||
failed_imports.append("Robosuite")
|
||||
|
||||
from rl_coach.base_parameters import Parameters, VisualizationParameters
|
||||
from rl_coach.environments.environment import Environment, EnvironmentParameters, LevelSelection
|
||||
from rl_coach.spaces import BoxActionSpace, VectorObservationSpace, StateSpace, PlanarMapsObservationSpace
|
||||
|
||||
# Importing our custom Robosuite environments here so that they are properly
|
||||
# registered in Robosuite, and so recognized by 'robosuite.make()' and included
|
||||
# in 'robosuite.ALL_ENVIRONMENTS'
|
||||
import rl_coach.environments.robosuite.cube_exp
|
||||
|
||||
|
||||
robosuite_environments = list(robosuite.ALL_ENVIRONMENTS)
|
||||
robosuite_robots = list(robosuite.ALL_ROBOTS)
|
||||
robosuite_controllers = list(robosuite.ALL_CONTROLLERS)
|
||||
|
||||
|
||||
def get_robosuite_env_extra_parameters(env_name: str):
|
||||
import inspect
|
||||
assert env_name in robosuite_environments
|
||||
|
||||
env_params = inspect.signature(robosuite.environments.REGISTERED_ENVS[env_name]).parameters
|
||||
base_params = list(RobosuiteBaseParameters().env_kwargs_dict().keys()) + ['robots', 'controller_configs']
|
||||
return {n: p.default for n, p in env_params.items() if n not in base_params}
|
||||
|
||||
|
||||
class OptionalObservations(Flag):
|
||||
NONE = 0
|
||||
CAMERA = auto()
|
||||
OBJECT = auto()
|
||||
|
||||
|
||||
class RobosuiteBaseParameters(Parameters):
|
||||
def __init__(self, optional_observations: OptionalObservations = OptionalObservations.NONE):
|
||||
super(RobosuiteBaseParameters, self).__init__()
|
||||
|
||||
# NOTE: Attribute names should exactly match the attribute names in Robosuite
|
||||
|
||||
self.horizon = 1000 # Every episode lasts for exactly horizon timesteps
|
||||
self.ignore_done = True # True if never terminating the environment (ignore horizon)
|
||||
self.reward_shaping = True # if True, use dense rewards.
|
||||
|
||||
# How many control signals to receive in every simulated second. This sets the amount of simulation time
|
||||
# that passes between every action input (this is NOT the same as frame_skip)
|
||||
self.control_freq = 10
|
||||
|
||||
# Optional observations (robot state is always returned)
|
||||
# if True, every observation includes a rendered image
|
||||
self.use_camera_obs = bool(optional_observations & OptionalObservations.CAMERA)
|
||||
# if True, include object (cube/etc.) information in the observation
|
||||
self.use_object_obs = bool(optional_observations & OptionalObservations.OBJECT)
|
||||
|
||||
# Camera parameters
|
||||
self.has_renderer = False # Set to true to use Mujoco native viewer for on-screen rendering
|
||||
self.render_camera = 'frontview' # name of camera to use for on-screen rendering
|
||||
self.has_offscreen_renderer = self.use_camera_obs
|
||||
self.render_collision_mesh = False # True if rendering collision meshes in camera. False otherwise
|
||||
self.render_visual_mesh = True # True if rendering visual meshes in camera. False otherwise
|
||||
self.camera_names = 'agentview' # name of camera for rendering camera observations
|
||||
self.camera_heights = 84 # height of camera frame.
|
||||
self.camera_widths = 84 # width of camera frame.
|
||||
self.camera_depths = False # True if rendering RGB-D, and RGB otherwise.
|
||||
|
||||
# Collision
|
||||
self.penalize_reward_on_collision = True
|
||||
self.end_episode_on_collision = False
|
||||
|
||||
|
||||
@property
|
||||
def optional_observations(self):
|
||||
flag = OptionalObservations.NONE
|
||||
if self.use_camera_obs:
|
||||
flag = OptionalObservations.CAMERA
|
||||
if self.use_object_obs:
|
||||
flag |= OptionalObservations.OBJECT
|
||||
elif self.use_object_obs:
|
||||
flag = OptionalObservations.OBJECT
|
||||
return flag
|
||||
|
||||
@optional_observations.setter
|
||||
def optional_observations(self, value):
|
||||
self.use_camera_obs = bool(value & OptionalObservations.CAMERA)
|
||||
if self.use_camera_obs:
|
||||
self.has_offscreen_renderer = True
|
||||
self.use_object_obs = bool(value & OptionalObservations.OBJECT)
|
||||
|
||||
def env_kwargs_dict(self):
|
||||
res = {k: (v.value if isinstance(v, Enum) else v) for k, v in vars(self).items()}
|
||||
return res
|
||||
|
||||
|
||||
class RobosuiteEnvironmentParameters(EnvironmentParameters):
|
||||
def __init__(self, level, robot=None, controller=None, apply_dr: bool = False,
|
||||
dr_every_n_steps_min: int = 10, dr_every_n_steps_max: int = 20,
|
||||
use_joint_vel_obs=False):
|
||||
super().__init__(level=level)
|
||||
self.base_parameters = RobosuiteBaseParameters()
|
||||
self.extra_parameters = {}
|
||||
self.robot = robot
|
||||
self.controller = controller
|
||||
self.apply_dr = apply_dr
|
||||
self.dr_every_n_steps_min = dr_every_n_steps_min
|
||||
self.dr_every_n_steps_max = dr_every_n_steps_max
|
||||
self.use_joint_vel_obs = use_joint_vel_obs
|
||||
self.custom_controller_config_fpath = None
|
||||
|
||||
@property
|
||||
def path(self):
|
||||
return 'rl_coach.environments.robosuite_environment:RobosuiteEnvironment'
|
||||
|
||||
|
||||
DEFAULT_REWARD_SCALES = {
|
||||
'Lift': 2.25,
|
||||
'LiftLab': 2.25,
|
||||
}
|
||||
|
||||
|
||||
RobosuiteStepResult = namedtuple('RobosuiteStepResult', ['observation', 'reward', 'done', 'info'])
|
||||
|
||||
|
||||
# Environment
|
||||
class RobosuiteEnvironment(Environment):
|
||||
def __init__(self, level: LevelSelection,
|
||||
seed: int, frame_skip: int, human_control: bool, custom_reward_threshold: Union[int, float, None],
|
||||
visualization_parameters: VisualizationParameters,
|
||||
base_parameters: RobosuiteBaseParameters,
|
||||
extra_parameters: Dict[str, Any],
|
||||
robot: str, controller: str,
|
||||
target_success_rate: float = 1.0, apply_dr: bool = False,
|
||||
dr_every_n_steps_min: int = 10, dr_every_n_steps_max: int = 20, use_joint_vel_obs=False,
|
||||
custom_controller_config_fpath=None, **kwargs):
|
||||
super(RobosuiteEnvironment, self).__init__(level, seed, frame_skip, human_control, custom_reward_threshold,
|
||||
visualization_parameters, target_success_rate)
|
||||
|
||||
# Validate arguments
|
||||
|
||||
self.frame_skip = max(1, self.frame_skip)
|
||||
|
||||
def validate_input(input, supported, name):
|
||||
if input not in supported:
|
||||
raise ValueError("Unknown Robosuite {0} passed: '{1}' ; Supported {0}s are: {2}".format(
|
||||
name, input, ' | '.join(supported)
|
||||
))
|
||||
|
||||
validate_input(self.env_id, robosuite_environments, 'environment')
|
||||
validate_input(robot, robosuite_robots, 'robot')
|
||||
self.robot = robot
|
||||
if controller is not None:
|
||||
validate_input(controller, robosuite_controllers, 'controller')
|
||||
self.controller = controller
|
||||
|
||||
self.base_parameters = base_parameters
|
||||
self.base_parameters.has_renderer = self.is_rendered and self.native_rendering
|
||||
self.base_parameters.has_offscreen_renderer = self.base_parameters.use_camera_obs or (self.is_rendered and not
|
||||
self.native_rendering)
|
||||
|
||||
# Seed
|
||||
if self.seed is not None:
|
||||
np.random.seed(self.seed)
|
||||
random.seed(self.seed)
|
||||
|
||||
# Load and initialize environment
|
||||
env_args = self.base_parameters.env_kwargs_dict()
|
||||
env_args.update(extra_parameters)
|
||||
|
||||
if 'reward_scale' not in env_args and self.env_id in DEFAULT_REWARD_SCALES:
|
||||
env_args['reward_scale'] = DEFAULT_REWARD_SCALES[self.env_id]
|
||||
|
||||
env_args['robots'] = self.robot
|
||||
controller_cfg = None
|
||||
if self.controller is not None:
|
||||
controller_cfg = robosuite.controllers.load_controller_config(default_controller=self.controller)
|
||||
elif custom_controller_config_fpath is not None:
|
||||
controller_cfg = robosuite.controllers.load_controller_config(custom_fpath=custom_controller_config_fpath)
|
||||
|
||||
env_args['controller_configs'] = controller_cfg
|
||||
|
||||
self.env = robosuite.make(self.env_id, **env_args)
|
||||
|
||||
# TODO: Generalize this to filter any observation by name
|
||||
if not use_joint_vel_obs:
|
||||
self.env.modify_observable('robot0_joint_vel', 'active', False)
|
||||
|
||||
# Wrap with a dummy wrapper so we get a consistent API (there are subtle changes between
|
||||
# wrappers and actual environments in Robosuite, for example action_spec as property vs. function)
|
||||
self.env = Wrapper(self.env)
|
||||
if apply_dr:
|
||||
self.env = DomainRandomizationWrapper(self.env, seed=self.seed, randomize_every_n_steps_min=dr_every_n_steps_min,
|
||||
randomize_every_n_steps_max=dr_every_n_steps_max)
|
||||
|
||||
# State space
|
||||
self.state_space = self._setup_state_space()
|
||||
|
||||
# Action space
|
||||
low, high = self.env.unwrapped.action_spec
|
||||
self.action_space = BoxActionSpace(low.shape, low=low, high=high)
|
||||
|
||||
self.reset_internal_state()
|
||||
|
||||
if self.is_rendered:
|
||||
image = self.get_rendered_image()
|
||||
self.renderer.create_screen(image.shape[1], image.shape[0])
|
||||
# TODO: Other environments call rendering here, why? reset_internal_state does it
|
||||
|
||||
def _setup_state_space(self):
|
||||
state_space = StateSpace({})
|
||||
dummy_obs = self._process_observation(self.env.observation_spec())
|
||||
|
||||
state_space['measurements'] = VectorObservationSpace(dummy_obs['measurements'].shape[0])
|
||||
|
||||
if self.base_parameters.use_camera_obs:
|
||||
state_space['camera'] = PlanarMapsObservationSpace(dummy_obs['camera'].shape, 0, 255)
|
||||
|
||||
return state_space
|
||||
|
||||
def _process_observation(self, raw_obs):
|
||||
new_obs = {}
|
||||
|
||||
# TODO: Support multiple cameras, this assumes a single camera
|
||||
camera_name = self.base_parameters.camera_names
|
||||
|
||||
camera_obs = raw_obs.get(camera_name + '_image', None)
|
||||
if camera_obs is not None:
|
||||
depth_obs = raw_obs.get(camera_name + '_depth', None)
|
||||
if depth_obs is not None:
|
||||
depth_obs = np.expand_dims(depth_obs, axis=2)
|
||||
camera_obs = np.concatenate([camera_obs, depth_obs], axis=2)
|
||||
new_obs['camera'] = camera_obs
|
||||
|
||||
measurements = raw_obs['robot0_proprio-state']
|
||||
object_obs = raw_obs.get('object-state', None)
|
||||
if object_obs is not None:
|
||||
measurements = np.concatenate([measurements, object_obs])
|
||||
new_obs['measurements'] = measurements
|
||||
|
||||
return new_obs
|
||||
|
||||
def _take_action(self, action):
|
||||
action = self.action_space.clip_action_to_space(action)
|
||||
|
||||
# We mimic the "action_repeat" mechanism of RobosuiteWrapper in Surreal.
|
||||
# Same concept as frame_skip, only returning the average reward across repeated actions instead
|
||||
# of the total reward.
|
||||
rewards = []
|
||||
for _ in range(self.frame_skip):
|
||||
obs, reward, done, info = self.env.step(action)
|
||||
rewards.append(reward)
|
||||
if done:
|
||||
break
|
||||
reward = np.mean(rewards)
|
||||
self.last_result = RobosuiteStepResult(obs, reward, done, info)
|
||||
|
||||
def _update_state(self):
|
||||
obs = self._process_observation(self.last_result.observation)
|
||||
self.state = {k: obs[k] for k in self.state_space.sub_spaces}
|
||||
self.reward = self.last_result.reward or 0
|
||||
self.done = self.last_result.done
|
||||
self.info = self.last_result.info
|
||||
|
||||
def _restart_environment_episode(self, force_environment_reset=False):
|
||||
reset_obs = self.env.reset()
|
||||
self.last_result = RobosuiteStepResult(reset_obs, 0.0, False, {})
|
||||
|
||||
def _render(self):
|
||||
self.env.render()
|
||||
|
||||
def get_rendered_image(self):
|
||||
img: np.ndarray = self.env.sim.render(camera_name=self.base_parameters.render_camera,
|
||||
height=512, width=512, depth=False)
|
||||
return np.flip(img, 0)
|
||||
|
||||
def close(self):
|
||||
self.env.close()
|
||||
|
||||
|
||||
class RobosuiteGoalBasedExpEnvironmentParameters(RobosuiteEnvironmentParameters):
|
||||
@property
|
||||
def path(self):
|
||||
return 'rl_coach.environments.robosuite_environment:RobosuiteGoalBasedExpEnvironment'
|
||||
|
||||
|
||||
class RobosuiteGoalBasedExpEnvironment(RobosuiteEnvironment):
|
||||
def _process_observation(self, raw_obs):
|
||||
new_obs = super()._process_observation(raw_obs)
|
||||
new_obs['obs-goal'] = None
|
||||
return new_obs
|
||||
|
||||
def _setup_state_space(self):
|
||||
state_space = super()._setup_state_space()
|
||||
goal_based_shape = list(state_space['camera'].shape)
|
||||
goal_based_shape[2] *= 2
|
||||
state_space['obs-goal'] = PlanarMapsObservationSpace(tuple(goal_based_shape), 0, 255)
|
||||
return state_space
|
||||
Reference in New Issue
Block a user