mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 11:40:18 +01:00
Robosuite exploration (#478)
* Add Robosuite parameters for all env types + initialize env flow * Init flow done * Rest of Environment API complete for RobosuiteEnvironment * RobosuiteEnvironment changes * Observation stacking filter * Add proper frame_skip in addition to control_freq * Hardcode Coach rendering to 'frontview' camera * Robosuite_Lift_DDPG preset + Robosuite env updates * Move observation stacking filter from env to preset * Pre-process observation - concatenate depth map (if exists) to image and object state (if exists) to robot state * Preset parameters based on Surreal DDPG parameters, taken from: https://github.com/SurrealAI/surreal/blob/master/surreal/main/ddpg_configs.py * RobosuiteEnvironment fixes - working now with PyGame rendering * Preset minor modifications * ObservationStackingFilter - option to concat non-vector observations * Consider frame skip when setting horizon in robosuite env * Robosuite lift preset - update heatup length and training interval * Robosuite env - change control_freq to 10 to match Surreal usage * Robosuite clipped PPO preset * Distribute multiple workers (-n #) over multiple GPUs * Clipped PPO memory optimization from @shadiendrawis * Fixes to evaluation only workers * RoboSuite_ClippedPPO: Update training interval * Undo last commit (update training interval) * Fix "doube-negative" if conditions * multi-agent single-trainer clipped ppo training with cartpole * cleanups (not done yet) + ~tuned hyper-params for mast * Switch to Robosuite v1 APIs * Change presets to IK controller * more cleanups + enabling evaluation worker + better logging * RoboSuite_Lift_ClippedPPO updates * Fix major bug in obs normalization filter setup * Reduce coupling between Robosuite API and Coach environment * Now only non task-specific parameters are explicitly defined in Coach * Removed a bunch of enums of Robosuite elements, using simple strings instead * With this change new environments/robots/controllers in Robosuite can be used immediately in Coach * MAST: better logging of actor-trainer interaction + bug fixes + performance improvements. Still missing: fixed pubsub for obs normalization running stats + logging for trainer signals * lstm support for ppo * setting JOINT VELOCITY action space by default + fix for EveryNEpisodes video dump filter + new TaskIDDumpFilter + allowing or between video dump filters * Separate Robosuite clipped PPO preset for the non-MAST case * Add flatten layer to architectures and use it in Robosuite presets This is required for embedders that mix conv and dense TODO: Add MXNet implementation * publishing running_stats together with the published policy + hyper-param for when to publish a policy + cleanups * bug-fix for memory leak in MAST * Bugfix: Return value in TF BatchnormActivationDropout.to_tf_instance * Explicit activations in embedder scheme so there's no ReLU after flatten * Add clipped PPO heads with configurable dense layers at the beginning * This is a workaround needed to mimic Surreal-PPO, where the CNN and LSTM are shared between actor and critic but the FC layers are not shared * Added a "SchemeBuilder" class, currently only used for the new heads but we can change Middleware and Embedder implementations to use it as well * Video dump setting fix in basic preset * logging screen output to file * coach to start the redis-server for a MAST run * trainer drops off-policy data + old policy in ClippedPPO updates only after policy was published + logging free memory stats + actors check for a new policy only at the beginning of a new episode + fixed a bug where the trainer was logging "Training Reward = 0", causing dashboard to incorrectly display the signal * Add missing set_internal_state function in TFSharedRunningStats * Robosuite preset - use SingleLevelSelect instead of hard-coded level * policy ID published directly on Redis * Small fix when writing to log file * Major bugfix in Robosuite presets - pass dense sizes to heads * RoboSuite_Lift_ClippedPPO hyper-params update * add horizon and value bootstrap to GAE calculation, fix A3C with LSTM * adam hyper-params from mujoco * updated MAST preset with IK_POSE_POS controller * configurable initialization for policy stdev + custom extra noise per actor + logging of policy stdev to dashboard * values loss weighting of 0.5 * minor fixes + presets * bug-fix for MAST where the old policy in the trainer had kept updating every training iter while it should only update after every policy publish * bug-fix: reset_internal_state was not called by the trainer * bug-fixes in the lstm flow + some hyper-param adjustments for CartPole_ClippedPPO_LSTM -> training and sometimes reaches 200 * adding back the horizon hyper-param - a messy commit * another bug-fix missing from prev commit * set control_freq=2 to match action_scale 0.125 * ClippedPPO with MAST cleanups and some preps for TD3 with MAST * TD3 presets. RoboSuite_Lift_TD3 seems to work well with multi-process runs (-n 8) * setting termination on collision to be on by default * bug-fix following prev-prev commit * initial cube exploration environment with TD3 commit * bug fix + minor refactoring * several parameter changes and RND debugging * Robosuite Gym wrapper + Rename TD3_Random* -> Random* * algorithm update * Add RoboSuite v1 env + presets (to eventually replace non-v1 ones) * Remove grasping presets, keep only V1 exp. presets (w/o V1 tag) * Keep just robosuite V1 env as the 'robosuite_environment' module * Exclude Robosuite and MAST presets from integration tests * Exclude LSTM and MAST presets from golden tests * Fix mistakenly removed import * Revert debug changes in ReaderWriterLock * Try another way to exclude LSTM/MAST golden tests * Remove debug prints * Remove PreDense heads, unused in the end * Missed removing an instance of PreDense head * Remove MAST, not required for this PR * Undo unused concat option in ObservationStackingFilter * Remove LSTM updates, not required in this PR * Update README.md * code changes for the exploration flow to work with robosuite master branch * code cleanup + documentation * jupyter tutorial for the goal-based exploration + scatter plot * typo fix * Update README.md * seprate parameter for the obs-goal observation + small fixes * code clarity fixes * adjustment in tutorial 5 * Update tutorial * Update tutorial Co-authored-by: Guy Jacob <guy.jacob@intel.com> Co-authored-by: Gal Leibovich <gal.leibovich@intel.com> Co-authored-by: shadi.endrawis <sendrawi@aipg-ra-skx-03.ra.intel.com>
This commit is contained in:
@@ -222,7 +222,8 @@ class GraphManager(object):
|
||||
if isinstance(task_parameters, DistributedTaskParameters):
|
||||
# the distributed tensorflow setting
|
||||
from rl_coach.architectures.tensorflow_components.distributed_tf_utils import create_monitored_session
|
||||
if hasattr(self.task_parameters, 'checkpoint_restore_path') and self.task_parameters.checkpoint_restore_path:
|
||||
if hasattr(self.task_parameters,
|
||||
'checkpoint_restore_path') and self.task_parameters.checkpoint_restore_path:
|
||||
checkpoint_dir = os.path.join(task_parameters.experiment_path, 'checkpoint')
|
||||
if os.path.exists(checkpoint_dir):
|
||||
remove_tree(checkpoint_dir)
|
||||
@@ -438,7 +439,8 @@ class GraphManager(object):
|
||||
# perform several steps of playing
|
||||
count_end = self.current_step_counter + steps
|
||||
result = None
|
||||
while self.current_step_counter < count_end or (wait_for_full_episodes and result is not None and not result.game_over):
|
||||
while self.current_step_counter < count_end or (
|
||||
wait_for_full_episodes and result is not None and not result.game_over):
|
||||
# reset the environment if the previous episode was terminated
|
||||
if self.reset_required:
|
||||
self.reset_internal_state()
|
||||
@@ -506,8 +508,14 @@ class GraphManager(object):
|
||||
# act for at least `steps`, though don't interrupt an episode
|
||||
count_end = self.current_step_counter + steps
|
||||
while self.current_step_counter < count_end:
|
||||
# In case of an evaluation-only worker, fake a phase transition before and after every
|
||||
# episode to make sure results are logged correctly
|
||||
if self.task_parameters.evaluate_only is not None:
|
||||
self.phase = RunPhase.TEST
|
||||
self.act(EnvironmentEpisodes(1))
|
||||
self.sync()
|
||||
if self.task_parameters.evaluate_only is not None:
|
||||
self.phase = RunPhase.TRAIN
|
||||
if self.should_stop():
|
||||
self.flush_finished()
|
||||
screen.success("Reached required success rate. Exiting.")
|
||||
@@ -555,7 +563,7 @@ class GraphManager(object):
|
||||
if self.task_parameters.checkpoint_restore_path:
|
||||
if os.path.isdir(self.task_parameters.checkpoint_restore_path):
|
||||
# a checkpoint dir
|
||||
if self.task_parameters.framework_type == Frameworks.tensorflow and\
|
||||
if self.task_parameters.framework_type == Frameworks.tensorflow and \
|
||||
'checkpoint' in os.listdir(self.task_parameters.checkpoint_restore_path):
|
||||
# TODO-fixme checkpointing
|
||||
# MonitoredTrainingSession manages save/restore checkpoints autonomously. Doing so,
|
||||
@@ -717,7 +725,8 @@ class GraphManager(object):
|
||||
self.memory_backend = get_memory_backend(self.agent_params.memory.memory_backend_params)
|
||||
|
||||
def should_stop(self) -> bool:
|
||||
return self.task_parameters.apply_stop_condition and all([manager.should_stop() for manager in self.level_managers])
|
||||
return self.task_parameters.apply_stop_condition and all(
|
||||
[manager.should_stop() for manager in self.level_managers])
|
||||
|
||||
def get_data_store(self, param):
|
||||
if self.data_store:
|
||||
@@ -727,10 +736,10 @@ class GraphManager(object):
|
||||
|
||||
def signal_ready(self):
|
||||
if self.task_parameters.checkpoint_save_dir and os.path.exists(self.task_parameters.checkpoint_save_dir):
|
||||
open(os.path.join(self.task_parameters.checkpoint_save_dir, SyncFiles.TRAINER_READY.value), 'w').close()
|
||||
open(os.path.join(self.task_parameters.checkpoint_save_dir, SyncFiles.TRAINER_READY.value), 'w').close()
|
||||
if hasattr(self, 'data_store_params'):
|
||||
data_store = self.get_data_store(self.data_store_params)
|
||||
data_store.save_to_store()
|
||||
data_store = self.get_data_store(self.data_store_params)
|
||||
data_store.save_to_store()
|
||||
|
||||
def close(self) -> None:
|
||||
"""
|
||||
|
||||
Reference in New Issue
Block a user