1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00

Release 0.9

Main changes are detailed below:

New features -
* CARLA 0.7 simulator integration
* Human control of the game play
* Recording of human game play and storing / loading the replay buffer
* Behavioral cloning agent and presets
* Golden tests for several presets
* Selecting between deep / shallow image embedders
* Rendering through pygame (with some boost in performance)

API changes -
* Improved environment wrapper API
* Added an evaluate flag to allow convenient evaluation of existing checkpoints
* Improve frameskip definition in Gym

Bug fixes -
* Fixed loading of checkpoints for agents with more than one network
* Fixed the N Step Q learning agent python3 compatibility
This commit is contained in:
Itai Caspi
2017-12-19 19:27:16 +02:00
committed by GitHub
parent 11faf19649
commit 125c7ee38d
41 changed files with 1713 additions and 260 deletions

View File

@@ -13,10 +13,16 @@ Training an agent to solve an environment is as easy as running:
python3 coach.py -p CartPole_DQN -r
```
<img src="img/doom.gif" alt="Doom Health Gathering" width="265" height="200"/><img src="img/minitaur.gif" alt="PyBullet Minitaur" width="265" height="200"/> <img src="img/ant.gif" alt="Gym Extensions Ant" width="250" height="200"/>
<img src="img/doom_deathmatch.gif" alt="Doom Deathmatch" width="267" height="200"/> <img src="img/carla.gif" alt="CARLA" width="284" height="200"/> <img src="img/montezuma.gif" alt="MontezumaRevenge" width="152" height="200"/>
Blog post from the Intel® Nervana™ website can be found [here](https://www.intelnervana.com/reinforcement-learning-coach-intel).
## Documentation
Framework documentation, algorithm description and instructions on how to contribute a new agent/environment can be found [here](http://coach.nervanasys.com).
## Installation
Note: Coach has only been tested on Ubuntu 16.04 LTS, and with Python 3.5.
@@ -103,6 +109,8 @@ For example:
It is easy to create new presets for different levels or environments by following the same pattern as in presets.py
More usage examples can be found [here](http://coach.nervanasys.com/usage/index.html).
## Running Coach Dashboard (Visualization)
Training an agent to solve an environment can be tricky, at times.
@@ -121,11 +129,6 @@ python3 dashboard.py
<img src="img/dashboard.png" alt="Coach Design" style="width: 800px;"/>
## Documentation
Framework documentation, algoritmic description and instructions on how to contribute a new agent/environment can be found [here](http://coach.nervanasys.com).
## Parallelizing an Algorithm
Since the introduction of [A3C](https://arxiv.org/abs/1602.01783) in 2016, many algorithms were shown to benefit from running multiple instances in parallel, on many CPU cores. So far, these algorithms include [A3C](https://arxiv.org/abs/1602.01783), [DDPG](https://arxiv.org/pdf/1704.03073.pdf), [PPO](https://arxiv.org/pdf/1707.06347.pdf), and [NAF](https://arxiv.org/pdf/1610.00633.pdf), and this is most probably only the begining.
@@ -150,11 +153,11 @@ python3 coach.py -p Hopper_A3C -n 16
## Supported Environments
* OpenAI Gym
* *OpenAI Gym:*
Installed by default by Coach's installer.
* ViZDoom:
* *ViZDoom:*
Follow the instructions described in the ViZDoom repository -
@@ -162,13 +165,13 @@ python3 coach.py -p Hopper_A3C -n 16
Additionally, Coach assumes that the environment variable VIZDOOM_ROOT points to the ViZDoom installation directory.
* Roboschool:
* *Roboschool:*
Follow the instructions described in the roboschool repository -
https://github.com/openai/roboschool
* GymExtensions:
* *GymExtensions:*
Follow the instructions described in the GymExtensions repository -
@@ -176,10 +179,19 @@ python3 coach.py -p Hopper_A3C -n 16
Additionally, add the installation directory to the PYTHONPATH environment variable.
* PyBullet
* *PyBullet:*
Follow the instructions described in the [Quick Start Guide](https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA) (basically just - 'pip install pybullet')
* *CARLA:*
Download release 0.7 from the CARLA repository -
https://github.com/carla-simulator/carla/releases
Create a new CARLA_ROOT environment variable pointing to CARLA's installation directory.
A simple CARLA settings file (```CarlaSettings.ini```) is supplied with Coach, and is located in the ```environments``` directory.
## Supported Algorithms
@@ -190,24 +202,24 @@ python3 coach.py -p Hopper_A3C -n 16
* [Deep Q Network (DQN)](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf)
* [Double Deep Q Network (DDQN)](https://arxiv.org/pdf/1509.06461.pdf)
* [Deep Q Network (DQN)](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) ([code](agents/dqn_agent.py))
* [Double Deep Q Network (DDQN)](https://arxiv.org/pdf/1509.06461.pdf) ([code](agents/ddqn_agent.py))
* [Dueling Q Network](https://arxiv.org/abs/1511.06581)
* [Mixed Monte Carlo (MMC)](https://arxiv.org/abs/1703.01310)
* [Persistent Advantage Learning (PAL)](https://arxiv.org/abs/1512.04860)
* [Categorical Deep Q Network (C51)](https://arxiv.org/abs/1707.06887)
* [Quantile Regression Deep Q Network (QR-DQN)](https://arxiv.org/pdf/1710.10044v1.pdf)
* [Bootstrapped Deep Q Network](https://arxiv.org/abs/1602.04621)
* [N-Step Q Learning](https://arxiv.org/abs/1602.01783) | **Distributed**
* [Neural Episodic Control (NEC)](https://arxiv.org/abs/1703.01988)
* [Normalized Advantage Functions (NAF)](https://arxiv.org/abs/1603.00748.pdf) | **Distributed**
* [Policy Gradients (PG)](http://www-anw.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf) | **Distributed**
* [Asynchronous Advantage Actor-Critic (A3C)](https://arxiv.org/abs/1602.01783) | **Distributed**
* [Deep Deterministic Policy Gradients (DDPG)](https://arxiv.org/abs/1509.02971) | **Distributed**
* [Proximal Policy Optimization (PPO)](https://arxiv.org/pdf/1707.06347.pdf)
* [Clipped Proximal Policy Optimization](https://arxiv.org/pdf/1707.06347.pdf) | **Distributed**
* [Direct Future Prediction (DFP)](https://arxiv.org/abs/1611.01779) | **Distributed**
* [Mixed Monte Carlo (MMC)](https://arxiv.org/abs/1703.01310) ([code](agents/mmc_agent.py))
* [Persistent Advantage Learning (PAL)](https://arxiv.org/abs/1512.04860) ([code](agents/pal_agent.py))
* [Categorical Deep Q Network (C51)](https://arxiv.org/abs/1707.06887) ([code](agents/categorical_dqn_agent.py))
* [Quantile Regression Deep Q Network (QR-DQN)](https://arxiv.org/pdf/1710.10044v1.pdf) ([code](agents/qr_dqn_agent.py))
* [Bootstrapped Deep Q Network](https://arxiv.org/abs/1602.04621) ([code](agents/bootstrapped_dqn_agent.py))
* [N-Step Q Learning](https://arxiv.org/abs/1602.01783) | **Distributed** ([code](agents/n_step_q_agent.py))
* [Neural Episodic Control (NEC)](https://arxiv.org/abs/1703.01988) ([code](agents/nec_agent.py))
* [Normalized Advantage Functions (NAF)](https://arxiv.org/abs/1603.00748.pdf) | **Distributed** ([code](agents/naf_agent.py))
* [Policy Gradients (PG)](http://www-anw.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf) | **Distributed** ([code](agents/policy_gradients_agent.py))
* [Asynchronous Advantage Actor-Critic (A3C)](https://arxiv.org/abs/1602.01783) | **Distributed** ([code](agents/actor_critic_agent.py))
* [Deep Deterministic Policy Gradients (DDPG)](https://arxiv.org/abs/1509.02971) | **Distributed** ([code](agents/ddpg_agent.py))
* [Proximal Policy Optimization (PPO)](https://arxiv.org/pdf/1707.06347.pdf) ([code](agents/ppo_agent.py))
* [Clipped Proximal Policy Optimization](https://arxiv.org/pdf/1707.06347.pdf) | **Distributed** ([code](agents/clipped_ppo_agent.py))
* [Direct Future Prediction (DFP)](https://arxiv.org/abs/1611.01779) | **Distributed** ([code](agents/dfp_agent.py))
* Behavioral Cloning (BC) ([code](agents/bc_agent.py))