mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
Release 0.9
Main changes are detailed below: New features - * CARLA 0.7 simulator integration * Human control of the game play * Recording of human game play and storing / loading the replay buffer * Behavioral cloning agent and presets * Golden tests for several presets * Selecting between deep / shallow image embedders * Rendering through pygame (with some boost in performance) API changes - * Improved environment wrapper API * Added an evaluate flag to allow convenient evaluation of existing checkpoints * Improve frameskip definition in Gym Bug fixes - * Fixed loading of checkpoints for agents with more than one network * Fixed the N Step Q learning agent python3 compatibility
This commit is contained in:
60
agents/distributional_dqn_agent.py
Normal file
60
agents/distributional_dqn_agent.py
Normal file
@@ -0,0 +1,60 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from agents.value_optimization_agent import *
|
||||
|
||||
|
||||
# Distributional Deep Q Network - https://arxiv.org/pdf/1707.06887.pdf
|
||||
class DistributionalDQNAgent(ValueOptimizationAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
self.z_values = np.linspace(self.tp.agent.v_min, self.tp.agent.v_max, self.tp.agent.atoms)
|
||||
|
||||
# prediction's format is (batch,actions,atoms)
|
||||
def get_q_values(self, prediction):
|
||||
return np.dot(prediction, self.z_values)
|
||||
|
||||
def learn_from_batch(self, batch):
|
||||
current_states, next_states, actions, rewards, game_overs, _ = self.extract_batch(batch)
|
||||
|
||||
# for the action we actually took, the error is calculated by the atoms distribution
|
||||
# for all other actions, the error is 0
|
||||
distributed_q_st_plus_1 = self.main_network.target_network.predict(next_states)
|
||||
# initialize with the current prediction so that we will
|
||||
TD_targets = self.main_network.online_network.predict(current_states)
|
||||
|
||||
# only update the action that we have actually done in this transition
|
||||
target_actions = np.argmax(self.get_q_values(distributed_q_st_plus_1), axis=1)
|
||||
m = np.zeros((self.tp.batch_size, self.z_values.size))
|
||||
|
||||
batches = np.arange(self.tp.batch_size)
|
||||
for j in range(self.z_values.size):
|
||||
tzj = np.fmax(np.fmin(rewards + (1.0 - game_overs) * self.tp.agent.discount * self.z_values[j],
|
||||
self.z_values[self.z_values.size - 1]),
|
||||
self.z_values[0])
|
||||
bj = (tzj - self.z_values[0])/(self.z_values[1] - self.z_values[0])
|
||||
u = (np.ceil(bj)).astype(int)
|
||||
l = (np.floor(bj)).astype(int)
|
||||
m[batches, l] = m[batches, l] + (distributed_q_st_plus_1[batches, target_actions, j] * (u - bj))
|
||||
m[batches, u] = m[batches, u] + (distributed_q_st_plus_1[batches, target_actions, j] * (bj - l))
|
||||
# total_loss = cross entropy between actual result above and predicted result for the given action
|
||||
TD_targets[batches, actions] = m
|
||||
|
||||
result = self.main_network.train_and_sync_networks(current_states, TD_targets)
|
||||
total_loss = result[0]
|
||||
|
||||
return total_loss
|
||||
|
||||
Reference in New Issue
Block a user