mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
Release 0.9
Main changes are detailed below: New features - * CARLA 0.7 simulator integration * Human control of the game play * Recording of human game play and storing / loading the replay buffer * Behavioral cloning agent and presets * Golden tests for several presets * Selecting between deep / shallow image embedders * Rendering through pygame (with some boost in performance) API changes - * Improved environment wrapper API * Added an evaluate flag to allow convenient evaluation of existing checkpoints * Improve frameskip definition in Gym Bug fixes - * Fixed loading of checkpoints for agents with more than one network * Fixed the N Step Q learning agent python3 compatibility
This commit is contained in:
@@ -15,15 +15,18 @@
|
||||
#
|
||||
|
||||
import tensorflow as tf
|
||||
from configurations import EmbedderComplexity
|
||||
|
||||
|
||||
class InputEmbedder(object):
|
||||
def __init__(self, input_size, activation_function=tf.nn.relu, name="embedder"):
|
||||
def __init__(self, input_size, activation_function=tf.nn.relu,
|
||||
embedder_complexity=EmbedderComplexity.Shallow, name="embedder"):
|
||||
self.name = name
|
||||
self.input_size = input_size
|
||||
self.activation_function = activation_function
|
||||
self.input = None
|
||||
self.output = None
|
||||
self.embedder_complexity = embedder_complexity
|
||||
|
||||
def __call__(self, prev_input_placeholder=None):
|
||||
with tf.variable_scope(self.get_name()):
|
||||
@@ -43,31 +46,77 @@ class InputEmbedder(object):
|
||||
|
||||
|
||||
class ImageEmbedder(InputEmbedder):
|
||||
def __init__(self, input_size, input_rescaler=255.0, activation_function=tf.nn.relu, name="embedder"):
|
||||
InputEmbedder.__init__(self, input_size, activation_function, name)
|
||||
def __init__(self, input_size, input_rescaler=255.0, activation_function=tf.nn.relu,
|
||||
embedder_complexity=EmbedderComplexity.Shallow, name="embedder"):
|
||||
InputEmbedder.__init__(self, input_size, activation_function, embedder_complexity, name)
|
||||
self.input_rescaler = input_rescaler
|
||||
|
||||
def _build_module(self):
|
||||
# image observation
|
||||
rescaled_observation_stack = self.input / self.input_rescaler
|
||||
self.observation_conv1 = tf.layers.conv2d(rescaled_observation_stack,
|
||||
filters=32, kernel_size=(8, 8), strides=(4, 4),
|
||||
activation=self.activation_function, data_format='channels_last')
|
||||
self.observation_conv2 = tf.layers.conv2d(self.observation_conv1,
|
||||
filters=64, kernel_size=(4, 4), strides=(2, 2),
|
||||
activation=self.activation_function, data_format='channels_last')
|
||||
self.observation_conv3 = tf.layers.conv2d(self.observation_conv2,
|
||||
filters=64, kernel_size=(3, 3), strides=(1, 1),
|
||||
activation=self.activation_function, data_format='channels_last')
|
||||
|
||||
self.output = tf.contrib.layers.flatten(self.observation_conv3)
|
||||
if self.embedder_complexity == EmbedderComplexity.Shallow:
|
||||
# same embedder as used in the original DQN paper
|
||||
self.observation_conv1 = tf.layers.conv2d(rescaled_observation_stack,
|
||||
filters=32, kernel_size=(8, 8), strides=(4, 4),
|
||||
activation=self.activation_function, data_format='channels_last')
|
||||
self.observation_conv2 = tf.layers.conv2d(self.observation_conv1,
|
||||
filters=64, kernel_size=(4, 4), strides=(2, 2),
|
||||
activation=self.activation_function, data_format='channels_last')
|
||||
self.observation_conv3 = tf.layers.conv2d(self.observation_conv2,
|
||||
filters=64, kernel_size=(3, 3), strides=(1, 1),
|
||||
activation=self.activation_function, data_format='channels_last')
|
||||
|
||||
self.output = tf.contrib.layers.flatten(self.observation_conv3)
|
||||
|
||||
elif self.embedder_complexity == EmbedderComplexity.Deep:
|
||||
# the embedder used in the CARLA papers
|
||||
self.observation_conv1 = tf.layers.conv2d(rescaled_observation_stack,
|
||||
filters=32, kernel_size=(5, 5), strides=(2, 2),
|
||||
activation=self.activation_function, data_format='channels_last')
|
||||
self.observation_conv2 = tf.layers.conv2d(self.observation_conv1,
|
||||
filters=32, kernel_size=(3, 3), strides=(1, 1),
|
||||
activation=self.activation_function, data_format='channels_last')
|
||||
self.observation_conv3 = tf.layers.conv2d(self.observation_conv2,
|
||||
filters=64, kernel_size=(3, 3), strides=(2, 2),
|
||||
activation=self.activation_function, data_format='channels_last')
|
||||
self.observation_conv4 = tf.layers.conv2d(self.observation_conv3,
|
||||
filters=64, kernel_size=(3, 3), strides=(1, 1),
|
||||
activation=self.activation_function, data_format='channels_last')
|
||||
self.observation_conv5 = tf.layers.conv2d(self.observation_conv4,
|
||||
filters=128, kernel_size=(3, 3), strides=(2, 2),
|
||||
activation=self.activation_function, data_format='channels_last')
|
||||
self.observation_conv6 = tf.layers.conv2d(self.observation_conv5,
|
||||
filters=128, kernel_size=(3, 3), strides=(1, 1),
|
||||
activation=self.activation_function, data_format='channels_last')
|
||||
self.observation_conv7 = tf.layers.conv2d(self.observation_conv6,
|
||||
filters=256, kernel_size=(3, 3), strides=(2, 2),
|
||||
activation=self.activation_function, data_format='channels_last')
|
||||
self.observation_conv8 = tf.layers.conv2d(self.observation_conv7,
|
||||
filters=256, kernel_size=(3, 3), strides=(1, 1),
|
||||
activation=self.activation_function, data_format='channels_last')
|
||||
|
||||
self.output = tf.contrib.layers.flatten(self.observation_conv8)
|
||||
else:
|
||||
raise ValueError("The defined embedder complexity value is invalid")
|
||||
|
||||
|
||||
class VectorEmbedder(InputEmbedder):
|
||||
def __init__(self, input_size, activation_function=tf.nn.relu, name="embedder"):
|
||||
InputEmbedder.__init__(self, input_size, activation_function, name)
|
||||
def __init__(self, input_size, activation_function=tf.nn.relu,
|
||||
embedder_complexity=EmbedderComplexity.Shallow, name="embedder"):
|
||||
InputEmbedder.__init__(self, input_size, activation_function, embedder_complexity, name)
|
||||
|
||||
def _build_module(self):
|
||||
# vector observation
|
||||
input_layer = tf.contrib.layers.flatten(self.input)
|
||||
self.output = tf.layers.dense(input_layer, 256, activation=self.activation_function)
|
||||
|
||||
if self.embedder_complexity == EmbedderComplexity.Shallow:
|
||||
self.output = tf.layers.dense(input_layer, 256, activation=self.activation_function)
|
||||
|
||||
elif self.embedder_complexity == EmbedderComplexity.Deep:
|
||||
# the embedder used in the CARLA papers
|
||||
self.observation_fc1 = tf.layers.dense(input_layer, 128, activation=self.activation_function)
|
||||
self.observation_fc2 = tf.layers.dense(self.observation_fc1, 128, activation=self.activation_function)
|
||||
self.output = tf.layers.dense(self.observation_fc2, 128, activation=self.activation_function)
|
||||
else:
|
||||
raise ValueError("The defined embedder complexity value is invalid")
|
||||
|
||||
Reference in New Issue
Block a user