mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 11:40:18 +01:00
RL in Large Discrete Action Spaces - Wolpertinger Agent (#394)
* Currently this is specific to the case of discretizing a continuous action space. Can easily be adapted to other case by feeding the kNN otherwise, and removing the usage of a discretizing output action filter
This commit is contained in:
@@ -18,6 +18,7 @@ from .classification_head import ClassificationHead
|
||||
from .cil_head import RegressionHead
|
||||
from .td3_v_head import TD3VHead
|
||||
from .ddpg_v_head import DDPGVHead
|
||||
from .wolpertinger_actor_head import WolpertingerActorHead
|
||||
|
||||
__all__ = [
|
||||
'CategoricalQHead',
|
||||
@@ -38,6 +39,7 @@ __all__ = [
|
||||
'SACQHead',
|
||||
'ClassificationHead',
|
||||
'RegressionHead',
|
||||
'TD3VHead'
|
||||
'DDPGVHead'
|
||||
'TD3VHead',
|
||||
'DDPGVHead',
|
||||
'WolpertingerActorHead'
|
||||
]
|
||||
|
||||
@@ -0,0 +1,59 @@
|
||||
#
|
||||
# Copyright (c) 2019 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import tensorflow as tf
|
||||
|
||||
from rl_coach.architectures.tensorflow_components.layers import batchnorm_activation_dropout, Dense
|
||||
from rl_coach.architectures.tensorflow_components.heads.head import Head
|
||||
from rl_coach.base_parameters import AgentParameters
|
||||
from rl_coach.core_types import Embedding
|
||||
from rl_coach.spaces import SpacesDefinition, BoxActionSpace
|
||||
|
||||
|
||||
class WolpertingerActorHead(Head):
|
||||
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
|
||||
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='tanh',
|
||||
batchnorm: bool=True, dense_layer=Dense, is_training=False):
|
||||
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
|
||||
dense_layer=dense_layer, is_training=is_training)
|
||||
self.name = 'wolpertinger_actor_head'
|
||||
self.return_type = Embedding
|
||||
self.action_embedding_width = agent_parameters.algorithm.action_embedding_width
|
||||
self.batchnorm = batchnorm
|
||||
self.output_scale = self.spaces.action.filtered_action_space.max_abs_range if \
|
||||
(hasattr(self.spaces.action, 'filtered_action_space') and
|
||||
isinstance(self.spaces.action.filtered_action_space, BoxActionSpace)) \
|
||||
else None
|
||||
|
||||
def _build_module(self, input_layer):
|
||||
# mean
|
||||
pre_activation_policy_value = self.dense_layer(self.action_embedding_width)(input_layer,
|
||||
name='actor_action_embedding')
|
||||
self.proto_action = batchnorm_activation_dropout(input_layer=pre_activation_policy_value,
|
||||
batchnorm=self.batchnorm,
|
||||
activation_function=self.activation_function,
|
||||
dropout_rate=0,
|
||||
is_training=self.is_training,
|
||||
name="BatchnormActivationDropout_0")[-1]
|
||||
if self.output_scale is not None:
|
||||
self.proto_action = tf.multiply(self.proto_action, self.output_scale, name='proto_action')
|
||||
|
||||
self.output = [self.proto_action]
|
||||
|
||||
def __str__(self):
|
||||
result = [
|
||||
'Dense (num outputs = {})'.format(self.action_embedding_width)
|
||||
]
|
||||
return '\n'.join(result)
|
||||
Reference in New Issue
Block a user