mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 11:40:18 +01:00
RL in Large Discrete Action Spaces - Wolpertinger Agent (#394)
* Currently this is specific to the case of discretizing a continuous action space. Can easily be adapted to other case by feeding the kNN otherwise, and removing the usage of a discretizing output action filter
This commit is contained in:
57
rl_coach/presets/Mujoco_Wolpertinger.py
Normal file
57
rl_coach/presets/Mujoco_Wolpertinger.py
Normal file
@@ -0,0 +1,57 @@
|
||||
from collections import OrderedDict
|
||||
|
||||
from rl_coach.architectures.layers import Dense
|
||||
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters, EmbedderScheme
|
||||
from rl_coach.core_types import EnvironmentEpisodes, EnvironmentSteps
|
||||
from rl_coach.environments.environment import SingleLevelSelection
|
||||
from rl_coach.environments.gym_environment import GymVectorEnvironment, mujoco_v2
|
||||
from rl_coach.filters.action import BoxDiscretization
|
||||
from rl_coach.filters.filter import OutputFilter
|
||||
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
|
||||
from rl_coach.graph_managers.graph_manager import ScheduleParameters
|
||||
from rl_coach.agents.wolpertinger_agent import WolpertingerAgentParameters
|
||||
|
||||
####################
|
||||
# Graph Scheduling #
|
||||
####################
|
||||
schedule_params = ScheduleParameters()
|
||||
schedule_params.improve_steps = EnvironmentSteps(2000000)
|
||||
schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(20)
|
||||
schedule_params.evaluation_steps = EnvironmentEpisodes(1)
|
||||
schedule_params.heatup_steps = EnvironmentSteps(3000)
|
||||
|
||||
#########
|
||||
# Agent #
|
||||
#########
|
||||
agent_params = WolpertingerAgentParameters()
|
||||
agent_params.network_wrappers['actor'].input_embedders_parameters['observation'].scheme = [Dense(400)]
|
||||
agent_params.network_wrappers['actor'].middleware_parameters.scheme = [Dense(300)]
|
||||
agent_params.network_wrappers['critic'].input_embedders_parameters['observation'].scheme = [Dense(400)]
|
||||
agent_params.network_wrappers['critic'].middleware_parameters.scheme = [Dense(300)]
|
||||
agent_params.network_wrappers['critic'].input_embedders_parameters['action'].scheme = EmbedderScheme.Empty
|
||||
agent_params.output_filter = \
|
||||
OutputFilter(
|
||||
action_filters=OrderedDict([
|
||||
('discretization', BoxDiscretization(num_bins_per_dimension=int(1e6)))
|
||||
]),
|
||||
is_a_reference_filter=False
|
||||
)
|
||||
|
||||
###############
|
||||
# Environment #
|
||||
###############
|
||||
env_params = GymVectorEnvironment(level=SingleLevelSelection(mujoco_v2))
|
||||
|
||||
########
|
||||
# Test #
|
||||
########
|
||||
preset_validation_params = PresetValidationParameters()
|
||||
preset_validation_params.test = True
|
||||
preset_validation_params.min_reward_threshold = 500
|
||||
preset_validation_params.max_episodes_to_achieve_reward = 1000
|
||||
preset_validation_params.reward_test_level = 'inverted_pendulum'
|
||||
preset_validation_params.trace_test_levels = ['inverted_pendulum']
|
||||
|
||||
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
|
||||
schedule_params=schedule_params, vis_params=VisualizationParameters(),
|
||||
preset_validation_params=preset_validation_params)
|
||||
Reference in New Issue
Block a user