mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
Batch RL Tutorial (#372)
This commit is contained in:
@@ -50,43 +50,51 @@ class PPOHeadParameters(HeadParameters):
|
||||
class VHeadParameters(HeadParameters):
|
||||
def __init__(self, activation_function: str ='relu', name: str='v_head_params',
|
||||
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
||||
loss_weight: float = 1.0, dense_layer=None, initializer='normalized_columns'):
|
||||
loss_weight: float = 1.0, dense_layer=None, initializer='normalized_columns',
|
||||
output_bias_initializer=None):
|
||||
super().__init__(parameterized_class_name="VHead", activation_function=activation_function, name=name,
|
||||
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
||||
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
||||
loss_weight=loss_weight)
|
||||
self.initializer = initializer
|
||||
self.output_bias_initializer = output_bias_initializer
|
||||
|
||||
|
||||
class DDPGVHeadParameters(HeadParameters):
|
||||
def __init__(self, activation_function: str ='relu', name: str='ddpg_v_head_params',
|
||||
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
||||
loss_weight: float = 1.0, dense_layer=None, initializer='normalized_columns'):
|
||||
loss_weight: float = 1.0, dense_layer=None, initializer='normalized_columns',
|
||||
output_bias_initializer=None):
|
||||
super().__init__(parameterized_class_name="DDPGVHead", activation_function=activation_function, name=name,
|
||||
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
||||
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
||||
loss_weight=loss_weight)
|
||||
self.initializer = initializer
|
||||
self.output_bias_initializer = output_bias_initializer
|
||||
|
||||
|
||||
class CategoricalQHeadParameters(HeadParameters):
|
||||
def __init__(self, activation_function: str ='relu', name: str='categorical_q_head_params',
|
||||
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
||||
loss_weight: float = 1.0, dense_layer=None):
|
||||
loss_weight: float = 1.0, dense_layer=None,
|
||||
output_bias_initializer=None):
|
||||
super().__init__(parameterized_class_name="CategoricalQHead", activation_function=activation_function, name=name,
|
||||
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
||||
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
||||
loss_weight=loss_weight)
|
||||
self.output_bias_initializer = output_bias_initializer
|
||||
|
||||
|
||||
class RegressionHeadParameters(HeadParameters):
|
||||
def __init__(self, activation_function: str ='relu', name: str='q_head_params',
|
||||
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
||||
loss_weight: float = 1.0, dense_layer=None, scheme=None):
|
||||
loss_weight: float = 1.0, dense_layer=None, scheme=None,
|
||||
output_bias_initializer=None):
|
||||
super().__init__(parameterized_class_name="RegressionHead", activation_function=activation_function, name=name,
|
||||
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
||||
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
||||
loss_weight=loss_weight)
|
||||
self.output_bias_initializer = output_bias_initializer
|
||||
|
||||
|
||||
class DDPGActorHeadParameters(HeadParameters):
|
||||
@@ -153,21 +161,23 @@ class PolicyHeadParameters(HeadParameters):
|
||||
class PPOVHeadParameters(HeadParameters):
|
||||
def __init__(self, activation_function: str ='relu', name: str='ppo_v_head_params',
|
||||
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
||||
loss_weight: float = 1.0, dense_layer=None):
|
||||
loss_weight: float = 1.0, dense_layer=None, output_bias_initializer=None):
|
||||
super().__init__(parameterized_class_name="PPOVHead", activation_function=activation_function, name=name,
|
||||
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
||||
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
||||
loss_weight=loss_weight)
|
||||
self.output_bias_initializer = output_bias_initializer
|
||||
|
||||
|
||||
class QHeadParameters(HeadParameters):
|
||||
def __init__(self, activation_function: str ='relu', name: str='q_head_params',
|
||||
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
||||
loss_weight: float = 1.0, dense_layer=None):
|
||||
loss_weight: float = 1.0, dense_layer=None, output_bias_initializer=None):
|
||||
super().__init__(parameterized_class_name="QHead", activation_function=activation_function, name=name,
|
||||
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
||||
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
||||
loss_weight=loss_weight)
|
||||
self.output_bias_initializer = output_bias_initializer
|
||||
|
||||
|
||||
class ClassificationHeadParameters(HeadParameters):
|
||||
@@ -183,11 +193,12 @@ class ClassificationHeadParameters(HeadParameters):
|
||||
class QuantileRegressionQHeadParameters(HeadParameters):
|
||||
def __init__(self, activation_function: str ='relu', name: str='quantile_regression_q_head_params',
|
||||
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
||||
loss_weight: float = 1.0, dense_layer=None):
|
||||
loss_weight: float = 1.0, dense_layer=None, output_bias_initializer=None):
|
||||
super().__init__(parameterized_class_name="QuantileRegressionQHead", activation_function=activation_function, name=name,
|
||||
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
||||
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
||||
loss_weight=loss_weight)
|
||||
self.output_bias_initializer = output_bias_initializer
|
||||
|
||||
|
||||
class RainbowQHeadParameters(HeadParameters):
|
||||
@@ -218,18 +229,21 @@ class SACPolicyHeadParameters(HeadParameters):
|
||||
|
||||
class SACQHeadParameters(HeadParameters):
|
||||
def __init__(self, activation_function: str ='relu', name: str='sac_q_head_params', dense_layer=None,
|
||||
layers_sizes: tuple = (256, 256)):
|
||||
layers_sizes: tuple = (256, 256), output_bias_initializer=None):
|
||||
super().__init__(parameterized_class_name='SACQHead', activation_function=activation_function, name=name,
|
||||
dense_layer=dense_layer)
|
||||
self.network_layers_sizes = layers_sizes
|
||||
self.output_bias_initializer = output_bias_initializer
|
||||
|
||||
|
||||
class TD3VHeadParameters(HeadParameters):
|
||||
def __init__(self, activation_function: str ='relu', name: str='td3_v_head_params',
|
||||
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
||||
loss_weight: float = 1.0, dense_layer=None, initializer='xavier'):
|
||||
loss_weight: float = 1.0, dense_layer=None, initializer='xavier',
|
||||
output_bias_initializer=None):
|
||||
super().__init__(parameterized_class_name="TD3VHead", activation_function=activation_function, name=name,
|
||||
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
||||
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
||||
loss_weight=loss_weight)
|
||||
self.initializer = initializer
|
||||
self.initializer = initializer
|
||||
self.output_bias_initializer = output_bias_initializer
|
||||
|
||||
Reference in New Issue
Block a user