mirror of
https://github.com/gryf/coach.git
synced 2026-02-16 22:25:47 +01:00
Batch RL Tutorial (#372)
This commit is contained in:
116
rl_coach/presets/Acrobot_DDQN_BCQ_BatchRL.py
Normal file
116
rl_coach/presets/Acrobot_DDQN_BCQ_BatchRL.py
Normal file
@@ -0,0 +1,116 @@
|
||||
import tensorflow as tf
|
||||
|
||||
from rl_coach.agents.ddqn_agent import DDQNAgentParameters
|
||||
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters
|
||||
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, CsvDataset
|
||||
from rl_coach.environments.gym_environment import GymVectorEnvironment
|
||||
from rl_coach.graph_managers.batch_rl_graph_manager import BatchRLGraphManager
|
||||
from rl_coach.graph_managers.graph_manager import ScheduleParameters
|
||||
from rl_coach.memories.memory import MemoryGranularity
|
||||
from rl_coach.schedules import LinearSchedule
|
||||
from rl_coach.memories.episodic import EpisodicExperienceReplayParameters
|
||||
from rl_coach.architectures.head_parameters import QHeadParameters
|
||||
from rl_coach.agents.ddqn_bcq_agent import DDQNBCQAgentParameters
|
||||
|
||||
from rl_coach.agents.ddqn_bcq_agent import KNNParameters
|
||||
|
||||
DATASET_SIZE = 50000
|
||||
|
||||
|
||||
####################
|
||||
# Graph Scheduling #
|
||||
####################
|
||||
|
||||
schedule_params = ScheduleParameters()
|
||||
schedule_params.improve_steps = TrainingSteps(10000000000)
|
||||
schedule_params.steps_between_evaluation_periods = TrainingSteps(1)
|
||||
schedule_params.evaluation_steps = EnvironmentEpisodes(10)
|
||||
schedule_params.heatup_steps = EnvironmentSteps(DATASET_SIZE)
|
||||
|
||||
#########
|
||||
# Agent #
|
||||
#########
|
||||
|
||||
agent_params = DDQNBCQAgentParameters()
|
||||
agent_params.network_wrappers['main'].batch_size = 128
|
||||
# TODO cross-DL framework abstraction for a constant initializer?
|
||||
agent_params.network_wrappers['main'].heads_parameters = [QHeadParameters(output_bias_initializer=tf.constant_initializer(-100))]
|
||||
|
||||
agent_params.algorithm.num_steps_between_copying_online_weights_to_target = TrainingSteps(
|
||||
100)
|
||||
agent_params.algorithm.discount = 0.99
|
||||
|
||||
agent_params.algorithm.action_drop_method_parameters = KNNParameters()
|
||||
|
||||
# NN configuration
|
||||
agent_params.network_wrappers['main'].learning_rate = 0.0001
|
||||
agent_params.network_wrappers['main'].replace_mse_with_huber_loss = False
|
||||
agent_params.network_wrappers['main'].softmax_temperature = 0.2
|
||||
|
||||
# ER size
|
||||
agent_params.memory = EpisodicExperienceReplayParameters()
|
||||
# DATATSET_PATH = 'acrobot.csv'
|
||||
# agent_params.memory.load_memory_from_file_path = CsvDataset(DATATSET_PATH, True)
|
||||
|
||||
# E-Greedy schedule
|
||||
agent_params.exploration.epsilon_schedule = LinearSchedule(0, 0, 10000)
|
||||
agent_params.exploration.evaluation_epsilon = 0
|
||||
|
||||
# Experience Generating Agent parameters
|
||||
experience_generating_agent_params = DDQNAgentParameters()
|
||||
|
||||
# schedule parameters
|
||||
experience_generating_schedule_params = ScheduleParameters()
|
||||
experience_generating_schedule_params.heatup_steps = EnvironmentSteps(1000)
|
||||
experience_generating_schedule_params.improve_steps = TrainingSteps(
|
||||
DATASET_SIZE - experience_generating_schedule_params.heatup_steps.num_steps)
|
||||
experience_generating_schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(10)
|
||||
experience_generating_schedule_params.evaluation_steps = EnvironmentEpisodes(1)
|
||||
|
||||
# DQN params
|
||||
experience_generating_agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(100)
|
||||
experience_generating_agent_params.algorithm.discount = 0.99
|
||||
experience_generating_agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(1)
|
||||
|
||||
# NN configuration
|
||||
experience_generating_agent_params.network_wrappers['main'].learning_rate = 0.0001
|
||||
experience_generating_agent_params.network_wrappers['main'].batch_size = 128
|
||||
experience_generating_agent_params.network_wrappers['main'].replace_mse_with_huber_loss = False
|
||||
experience_generating_agent_params.network_wrappers['main'].heads_parameters = \
|
||||
[QHeadParameters(output_bias_initializer=tf.constant_initializer(-100))]
|
||||
|
||||
# ER size
|
||||
experience_generating_agent_params.memory = EpisodicExperienceReplayParameters()
|
||||
experience_generating_agent_params.memory.max_size = \
|
||||
(MemoryGranularity.Transitions,
|
||||
experience_generating_schedule_params.heatup_steps.num_steps +
|
||||
experience_generating_schedule_params.improve_steps.num_steps + 1)
|
||||
|
||||
# E-Greedy schedule
|
||||
experience_generating_agent_params.exploration.epsilon_schedule = LinearSchedule(1.0, 0.01, DATASET_SIZE)
|
||||
experience_generating_agent_params.exploration.evaluation_epsilon = 0
|
||||
|
||||
|
||||
################
|
||||
# Environment #
|
||||
################
|
||||
env_params = GymVectorEnvironment(level='Acrobot-v1')
|
||||
|
||||
########
|
||||
# Test #
|
||||
########
|
||||
preset_validation_params = PresetValidationParameters()
|
||||
preset_validation_params.test = True
|
||||
preset_validation_params.min_reward_threshold = 150
|
||||
preset_validation_params.max_episodes_to_achieve_reward = 50
|
||||
preset_validation_params.read_csv_tries = 500
|
||||
|
||||
graph_manager = BatchRLGraphManager(agent_params=agent_params,
|
||||
experience_generating_agent_params=experience_generating_agent_params,
|
||||
experience_generating_schedule_params=experience_generating_schedule_params,
|
||||
env_params=env_params,
|
||||
schedule_params=schedule_params,
|
||||
vis_params=VisualizationParameters(dump_signals_to_csv_every_x_episodes=1),
|
||||
preset_validation_params=preset_validation_params,
|
||||
reward_model_num_epochs=30,
|
||||
train_to_eval_ratio=0.4)
|
||||
Reference in New Issue
Block a user