mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
pre-release 0.10.0
This commit is contained in:
81
rl_coach/agents/bc_agent.py
Normal file
81
rl_coach/agents/bc_agent.py
Normal file
@@ -0,0 +1,81 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
from rl_coach.agents.imitation_agent import ImitationAgent
|
||||
from rl_coach.architectures.tensorflow_components.heads.policy_head import PolicyHeadParameters
|
||||
from rl_coach.architectures.tensorflow_components.middlewares.fc_middleware import FCMiddlewareParameters
|
||||
from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters
|
||||
|
||||
from rl_coach.base_parameters import AgentParameters, AlgorithmParameters, NetworkParameters, InputEmbedderParameters, \
|
||||
MiddlewareScheme
|
||||
from rl_coach.exploration_policies.e_greedy import EGreedyParameters
|
||||
|
||||
|
||||
class BCAlgorithmParameters(AlgorithmParameters):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.collect_new_data = False
|
||||
|
||||
|
||||
class BCNetworkParameters(NetworkParameters):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.input_embedders_parameters = {'observation': InputEmbedderParameters()}
|
||||
self.middleware_parameters = FCMiddlewareParameters(scheme=MiddlewareScheme.Medium)
|
||||
self.heads_parameters = [PolicyHeadParameters()]
|
||||
self.loss_weights = [1.0]
|
||||
self.optimizer_type = 'Adam'
|
||||
self.batch_size = 32
|
||||
self.replace_mse_with_huber_loss = False
|
||||
self.create_target_network = False
|
||||
|
||||
|
||||
class BCAgentParameters(AgentParameters):
|
||||
def __init__(self):
|
||||
super().__init__(algorithm=BCAlgorithmParameters(),
|
||||
exploration=EGreedyParameters(),
|
||||
memory=EpisodicExperienceReplayParameters(),
|
||||
networks={"main": BCNetworkParameters()})
|
||||
|
||||
@property
|
||||
def path(self):
|
||||
return 'rl_coach.agents.bc_agent:BCAgent'
|
||||
|
||||
|
||||
# Behavioral Cloning Agent
|
||||
class BCAgent(ImitationAgent):
|
||||
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
||||
super().__init__(agent_parameters, parent)
|
||||
|
||||
def learn_from_batch(self, batch):
|
||||
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()
|
||||
|
||||
# When using a policy head, the targets refer to the advantages that we are normally feeding the head with.
|
||||
# In this case, we need the policy head to just predict probabilities, so while we usually train the network
|
||||
# with log(Pi)*Advantages, in this specific case we will train it to log(Pi), which after the softmax will
|
||||
# predict Pi (=probabilities)
|
||||
targets = np.ones(batch.actions().shape[0])
|
||||
|
||||
result = self.networks['main'].train_and_sync_networks({**batch.states(network_keys),
|
||||
'output_0_0': batch.actions()},
|
||||
targets)
|
||||
total_loss, losses, unclipped_grads = result[:3]
|
||||
|
||||
return total_loss, losses, unclipped_grads
|
||||
|
||||
Reference in New Issue
Block a user