mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
pre-release 0.10.0
This commit is contained in:
76
rl_coach/agents/imitation_agent.py
Normal file
76
rl_coach/agents/imitation_agent.py
Normal file
@@ -0,0 +1,76 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from collections import OrderedDict
|
||||
from typing import Union
|
||||
|
||||
from rl_coach.core_types import RunPhase, ActionInfo
|
||||
from rl_coach.spaces import DiscreteActionSpace
|
||||
|
||||
from rl_coach.agents.agent import Agent
|
||||
from rl_coach.logger import screen
|
||||
|
||||
|
||||
## This is an abstract agent - there is no learn_from_batch method ##
|
||||
|
||||
# Imitation Agent
|
||||
class ImitationAgent(Agent):
|
||||
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
||||
super().__init__(agent_parameters, parent)
|
||||
|
||||
self.imitation = True
|
||||
|
||||
def extract_action_values(self, prediction):
|
||||
return prediction.squeeze()
|
||||
|
||||
def choose_action(self, curr_state):
|
||||
# convert to batch so we can run it through the network
|
||||
prediction = self.networks['main'].online_network.predict(self.prepare_batch_for_inference(curr_state, 'main'))
|
||||
|
||||
# get action values and extract the best action from it
|
||||
action_values = self.extract_action_values(prediction)
|
||||
if type(self.spaces.action) == DiscreteActionSpace:
|
||||
# DISCRETE
|
||||
self.exploration_policy.phase = RunPhase.TEST
|
||||
action = self.exploration_policy.get_action(action_values)
|
||||
|
||||
action_info = ActionInfo(action=action,
|
||||
action_probability=action_values[action])
|
||||
else:
|
||||
# CONTINUOUS
|
||||
action = action_values
|
||||
|
||||
action_info = ActionInfo(action=action)
|
||||
|
||||
return action_info
|
||||
|
||||
def log_to_screen(self):
|
||||
# log to screen
|
||||
if self.phase == RunPhase.TRAIN:
|
||||
# for the training phase - we log during the episode to visualize the progress in training
|
||||
log = OrderedDict()
|
||||
if self.task_id is not None:
|
||||
log["Worker"] = self.task_id
|
||||
log["Episode"] = self.current_episode
|
||||
log["Loss"] = self.loss.values[-1]
|
||||
log["Training iteration"] = self.training_iteration
|
||||
screen.log_dict(log, prefix="Training")
|
||||
else:
|
||||
# for the evaluation phase - logging as in regular RL
|
||||
super().log_to_screen()
|
||||
|
||||
def learn_from_batch(self, batch):
|
||||
raise NotImplementedError("ImitationAgent is an abstract agent. Not to be used directly.")
|
||||
Reference in New Issue
Block a user