mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
pre-release 0.10.0
This commit is contained in:
72
rl_coach/agents/mmc_agent.py
Normal file
72
rl_coach/agents/mmc_agent.py
Normal file
@@ -0,0 +1,72 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from rl_coach.agents.dqn_agent import DQNAgentParameters, DQNAlgorithmParameters
|
||||
from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent
|
||||
from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters
|
||||
|
||||
|
||||
class MixedMonteCarloAlgorithmParameters(DQNAlgorithmParameters):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.monte_carlo_mixing_rate = 0.1
|
||||
|
||||
|
||||
class MixedMonteCarloAgentParameters(DQNAgentParameters):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.algorithm = MixedMonteCarloAlgorithmParameters()
|
||||
self.memory = EpisodicExperienceReplayParameters()
|
||||
|
||||
@property
|
||||
def path(self):
|
||||
return 'rl_coach.agents.mmc_agent:MixedMonteCarloAgent'
|
||||
|
||||
|
||||
class MixedMonteCarloAgent(ValueOptimizationAgent):
|
||||
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
||||
super().__init__(agent_parameters, parent)
|
||||
self.mixing_rate = agent_parameters.algorithm.monte_carlo_mixing_rate
|
||||
|
||||
def learn_from_batch(self, batch):
|
||||
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()
|
||||
|
||||
# for the 1-step, we use the double-dqn target. hence actions are taken greedily according to the online network
|
||||
selected_actions = np.argmax(self.networks['main'].online_network.predict(batch.next_states(network_keys)), 1)
|
||||
|
||||
# TD_targets are initialized with the current prediction so that we will
|
||||
# only update the action that we have actually done in this transition
|
||||
q_st_plus_1, TD_targets = self.networks['main'].parallel_prediction([
|
||||
(self.networks['main'].target_network, batch.next_states(network_keys)),
|
||||
(self.networks['main'].online_network, batch.states(network_keys))
|
||||
])
|
||||
|
||||
for i in range(self.ap.network_wrappers['main'].batch_size):
|
||||
one_step_target = batch.rewards()[i] + \
|
||||
(1.0 - batch.game_overs()[i]) * self.ap.algorithm.discount * \
|
||||
q_st_plus_1[i][selected_actions[i]]
|
||||
monte_carlo_target = batch.total_returns()[i]
|
||||
TD_targets[i, batch.actions()[i]] = (1 - self.mixing_rate) * one_step_target + \
|
||||
self.mixing_rate * monte_carlo_target
|
||||
|
||||
result = self.networks['main'].train_and_sync_networks(batch.states(network_keys), TD_targets)
|
||||
total_loss, losses, unclipped_grads = result[:3]
|
||||
|
||||
return total_loss, losses, unclipped_grads
|
||||
Reference in New Issue
Block a user