mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
pre-release 0.10.0
This commit is contained in:
126
rl_coach/agents/n_step_q_agent.py
Normal file
126
rl_coach/agents/n_step_q_agent.py
Normal file
@@ -0,0 +1,126 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
from rl_coach.agents.policy_optimization_agent import PolicyOptimizationAgent
|
||||
from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent
|
||||
from rl_coach.architectures.tensorflow_components.heads.q_head import QHeadParameters
|
||||
from rl_coach.architectures.tensorflow_components.middlewares.fc_middleware import FCMiddlewareParameters
|
||||
from rl_coach.base_parameters import AlgorithmParameters, AgentParameters, NetworkParameters, \
|
||||
InputEmbedderParameters
|
||||
from rl_coach.exploration_policies.e_greedy import EGreedyParameters
|
||||
from rl_coach.utils import last_sample
|
||||
|
||||
from rl_coach.core_types import EnvironmentSteps
|
||||
from rl_coach.memories.episodic.single_episode_buffer import SingleEpisodeBufferParameters
|
||||
|
||||
|
||||
class NStepQNetworkParameters(NetworkParameters):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.input_embedders_parameters = {'observation': InputEmbedderParameters()}
|
||||
self.middleware_parameters = FCMiddlewareParameters()
|
||||
self.heads_parameters = [QHeadParameters()]
|
||||
self.loss_weights = [1.0]
|
||||
self.optimizer_type = 'Adam'
|
||||
self.async_training = True
|
||||
self.shared_optimizer = True
|
||||
self.create_target_network = True
|
||||
|
||||
|
||||
class NStepQAlgorithmParameters(AlgorithmParameters):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(10000)
|
||||
self.apply_gradients_every_x_episodes = 1
|
||||
self.num_steps_between_gradient_updates = 5 # this is called t_max in all the papers
|
||||
self.targets_horizon = 'N-Step'
|
||||
|
||||
|
||||
class NStepQAgentParameters(AgentParameters):
|
||||
def __init__(self):
|
||||
super().__init__(algorithm=NStepQAlgorithmParameters(),
|
||||
exploration=EGreedyParameters(),
|
||||
memory=SingleEpisodeBufferParameters(),
|
||||
networks={"main": NStepQNetworkParameters()})
|
||||
|
||||
@property
|
||||
def path(self):
|
||||
return 'rl_coach.agents.n_step_q_agent:NStepQAgent'
|
||||
|
||||
|
||||
# N Step Q Learning Agent - https://arxiv.org/abs/1602.01783
|
||||
class NStepQAgent(ValueOptimizationAgent, PolicyOptimizationAgent):
|
||||
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
||||
super().__init__(agent_parameters, parent)
|
||||
self.last_gradient_update_step_idx = 0
|
||||
self.q_values = self.register_signal('Q Values')
|
||||
self.value_loss = self.register_signal('Value Loss')
|
||||
|
||||
def learn_from_batch(self, batch):
|
||||
# batch contains a list of episodes to learn from
|
||||
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()
|
||||
|
||||
# get the values for the current states
|
||||
state_value_head_targets = self.networks['main'].online_network.predict(batch.states(network_keys))
|
||||
|
||||
# the targets for the state value estimator
|
||||
if self.ap.algorithm.targets_horizon == '1-Step':
|
||||
# 1-Step Q learning
|
||||
q_st_plus_1 = self.networks['main'].target_network.predict(batch.next_states(network_keys))
|
||||
|
||||
for i in reversed(range(batch.size)):
|
||||
state_value_head_targets[i][batch.actions()[i]] = \
|
||||
batch.rewards()[i] \
|
||||
+ (1.0 - batch.game_overs()[i]) * self.ap.algorithm.discount * np.max(q_st_plus_1[i], 0)
|
||||
|
||||
elif self.ap.algorithm.targets_horizon == 'N-Step':
|
||||
# N-Step Q learning
|
||||
if batch.game_overs()[-1]:
|
||||
R = 0
|
||||
else:
|
||||
R = np.max(self.networks['main'].target_network.predict(last_sample(batch.next_states(network_keys))))
|
||||
|
||||
for i in reversed(range(batch.size)):
|
||||
R = batch.rewards()[i] + self.ap.algorithm.discount * R
|
||||
state_value_head_targets[i][batch.actions()[i]] = R
|
||||
|
||||
else:
|
||||
assert True, 'The available values for targets_horizon are: 1-Step, N-Step'
|
||||
|
||||
# train
|
||||
result = self.networks['main'].online_network.accumulate_gradients(batch.states(network_keys), [state_value_head_targets])
|
||||
|
||||
# logging
|
||||
total_loss, losses, unclipped_grads = result[:3]
|
||||
self.value_loss.add_sample(losses[0])
|
||||
|
||||
return total_loss, losses, unclipped_grads
|
||||
|
||||
def train(self):
|
||||
# update the target network of every network that has a target network
|
||||
if any([network.has_target for network in self.networks.values()]) \
|
||||
and self._should_update_online_weights_to_target():
|
||||
for network in self.networks.values():
|
||||
network.update_target_network(self.ap.algorithm.rate_for_copying_weights_to_target)
|
||||
|
||||
self.agent_logger.create_signal_value('Update Target Network', 1)
|
||||
else:
|
||||
self.agent_logger.create_signal_value('Update Target Network', 0, overwrite=False)
|
||||
|
||||
return PolicyOptimizationAgent.train(self)
|
||||
Reference in New Issue
Block a user