mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
pre-release 0.10.0
This commit is contained in:
126
rl_coach/agents/naf_agent.py
Normal file
126
rl_coach/agents/naf_agent.py
Normal file
@@ -0,0 +1,126 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent
|
||||
from rl_coach.architectures.tensorflow_components.heads.naf_head import NAFHeadParameters
|
||||
from rl_coach.architectures.tensorflow_components.middlewares.fc_middleware import FCMiddlewareParameters
|
||||
from rl_coach.base_parameters import AlgorithmParameters, AgentParameters, \
|
||||
NetworkParameters, InputEmbedderParameters
|
||||
from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters
|
||||
from rl_coach.spaces import BoxActionSpace
|
||||
|
||||
from rl_coach.core_types import ActionInfo, EnvironmentSteps
|
||||
from rl_coach.exploration_policies.ou_process import OUProcessParameters
|
||||
|
||||
|
||||
class NAFNetworkParameters(NetworkParameters):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.input_embedders_parameters = {'observation': InputEmbedderParameters()}
|
||||
self.middleware_parameters = FCMiddlewareParameters()
|
||||
self.heads_parameters = [NAFHeadParameters()]
|
||||
self.loss_weights = [1.0]
|
||||
self.optimizer_type = 'Adam'
|
||||
self.learning_rate = 0.001
|
||||
self.async_training = True
|
||||
self.create_target_network = True
|
||||
|
||||
|
||||
class NAFAlgorithmParameters(AlgorithmParameters):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.num_consecutive_training_steps = 5
|
||||
self.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(1)
|
||||
self.rate_for_copying_weights_to_target = 0.001
|
||||
|
||||
|
||||
class NAFAgentParameters(AgentParameters):
|
||||
def __init__(self):
|
||||
super().__init__(algorithm=NAFAlgorithmParameters(),
|
||||
exploration=OUProcessParameters(),
|
||||
memory=EpisodicExperienceReplayParameters(),
|
||||
networks={"main": NAFNetworkParameters()})
|
||||
|
||||
@property
|
||||
def path(self):
|
||||
return 'rl_coach.agents.naf_agent:NAFAgent'
|
||||
|
||||
|
||||
# Normalized Advantage Functions - https://arxiv.org/pdf/1603.00748.pdf
|
||||
class NAFAgent(ValueOptimizationAgent):
|
||||
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
||||
super().__init__(agent_parameters, parent)
|
||||
self.l_values = self.register_signal("L")
|
||||
self.a_values = self.register_signal("Advantage")
|
||||
self.mu_values = self.register_signal("Action")
|
||||
self.v_values = self.register_signal("V")
|
||||
self.TD_targets = self.register_signal("TD targets")
|
||||
|
||||
def learn_from_batch(self, batch):
|
||||
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()
|
||||
|
||||
# TD error = r + discount*v_st_plus_1 - q_st
|
||||
v_st_plus_1 = self.networks['main'].target_network.predict(
|
||||
batch.next_states(network_keys),
|
||||
self.networks['main'].target_network.output_heads[0].V,
|
||||
squeeze_output=False,
|
||||
)
|
||||
TD_targets = np.expand_dims(batch.rewards(), -1) + \
|
||||
(1.0 - np.expand_dims(batch.game_overs(), -1)) * self.ap.algorithm.discount * v_st_plus_1
|
||||
|
||||
self.TD_targets.add_sample(TD_targets)
|
||||
|
||||
result = self.networks['main'].train_and_sync_networks({**batch.states(network_keys),
|
||||
'output_0_0': batch.actions(len(batch.actions().shape) == 1)
|
||||
}, TD_targets)
|
||||
total_loss, losses, unclipped_grads = result[:3]
|
||||
|
||||
return total_loss, losses, unclipped_grads
|
||||
|
||||
def choose_action(self, curr_state):
|
||||
if type(self.spaces.action) != BoxActionSpace:
|
||||
raise ValueError('NAF works only for continuous control problems')
|
||||
|
||||
# convert to batch so we can run it through the network
|
||||
tf_input_state = self.prepare_batch_for_inference(curr_state, 'main')
|
||||
naf_head = self.networks['main'].online_network.output_heads[0]
|
||||
action_values = self.networks['main'].online_network.predict(tf_input_state, outputs=naf_head.mu,
|
||||
squeeze_output=False)
|
||||
|
||||
# get the actual action to use
|
||||
action = self.exploration_policy.get_action(action_values)
|
||||
|
||||
# get the internal values for logging
|
||||
outputs = [naf_head.mu, naf_head.Q, naf_head.L, naf_head.A, naf_head.V]
|
||||
result = self.networks['main'].online_network.predict(
|
||||
{**tf_input_state, 'output_0_0': action_values},
|
||||
outputs=outputs
|
||||
)
|
||||
mu, Q, L, A, V = result
|
||||
|
||||
# store the q values statistics for logging
|
||||
self.q_values.add_sample(Q)
|
||||
self.l_values.add_sample(L)
|
||||
self.a_values.add_sample(A)
|
||||
self.mu_values.add_sample(mu)
|
||||
self.v_values.add_sample(V)
|
||||
|
||||
action_info = ActionInfo(action=action, action_value=Q)
|
||||
|
||||
return action_info
|
||||
Reference in New Issue
Block a user