mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
pre-release 0.10.0
This commit is contained in:
98
rl_coach/agents/value_optimization_agent.py
Normal file
98
rl_coach/agents/value_optimization_agent.py
Normal file
@@ -0,0 +1,98 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
from rl_coach.memories.non_episodic.prioritized_experience_replay import PrioritizedExperienceReplay
|
||||
from rl_coach.spaces import DiscreteActionSpace
|
||||
|
||||
from rl_coach.agents.agent import Agent
|
||||
from rl_coach.core_types import ActionInfo, StateType
|
||||
|
||||
|
||||
## This is an abstract agent - there is no learn_from_batch method ##
|
||||
|
||||
|
||||
class ValueOptimizationAgent(Agent):
|
||||
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
||||
super().__init__(agent_parameters, parent)
|
||||
self.q_values = self.register_signal("Q")
|
||||
self.q_value_for_action = {}
|
||||
|
||||
def init_environment_dependent_modules(self):
|
||||
super().init_environment_dependent_modules()
|
||||
if isinstance(self.spaces.action, DiscreteActionSpace):
|
||||
for i in range(len(self.spaces.action.actions)):
|
||||
self.q_value_for_action[i] = self.register_signal("Q for action {}".format(i),
|
||||
dump_one_value_per_episode=False,
|
||||
dump_one_value_per_step=True)
|
||||
|
||||
# Algorithms for which q_values are calculated from predictions will override this function
|
||||
def get_all_q_values_for_states(self, states: StateType):
|
||||
if self.exploration_policy.requires_action_values():
|
||||
actions_q_values = self.get_prediction(states)
|
||||
else:
|
||||
actions_q_values = None
|
||||
return actions_q_values
|
||||
|
||||
def get_prediction(self, states):
|
||||
return self.networks['main'].online_network.predict(self.prepare_batch_for_inference(states, 'main'))
|
||||
|
||||
def update_transition_priorities_and_get_weights(self, TD_errors, batch):
|
||||
# update errors in prioritized replay buffer
|
||||
importance_weights = None
|
||||
if isinstance(self.memory, PrioritizedExperienceReplay):
|
||||
self.call_memory('update_priorities', (batch.info('idx'), TD_errors))
|
||||
importance_weights = batch.info('weight')
|
||||
return importance_weights
|
||||
|
||||
def _validate_action(self, policy, action):
|
||||
if np.array(action).shape != ():
|
||||
raise ValueError((
|
||||
'The exploration_policy {} returned a vector of actions '
|
||||
'instead of a single action. ValueOptimizationAgents '
|
||||
'require exploration policies which return a single action.'
|
||||
).format(policy.__class__.__name__))
|
||||
|
||||
def choose_action(self, curr_state):
|
||||
actions_q_values = self.get_all_q_values_for_states(curr_state)
|
||||
|
||||
# choose action according to the exploration policy and the current phase (evaluating or training the agent)
|
||||
action = self.exploration_policy.get_action(actions_q_values)
|
||||
self._validate_action(self.exploration_policy, action)
|
||||
|
||||
if actions_q_values is not None:
|
||||
# this is for bootstrapped dqn
|
||||
if type(actions_q_values) == list and len(actions_q_values) > 0:
|
||||
actions_q_values = self.exploration_policy.last_action_values
|
||||
actions_q_values = actions_q_values.squeeze()
|
||||
|
||||
# store the q values statistics for logging
|
||||
self.q_values.add_sample(actions_q_values)
|
||||
for i, q_value in enumerate(actions_q_values):
|
||||
self.q_value_for_action[i].add_sample(q_value)
|
||||
|
||||
action_info = ActionInfo(action=action,
|
||||
action_value=actions_q_values[action],
|
||||
max_action_value=np.max(actions_q_values))
|
||||
else:
|
||||
action_info = ActionInfo(action=action)
|
||||
|
||||
return action_info
|
||||
|
||||
def learn_from_batch(self, batch):
|
||||
raise NotImplementedError("ValueOptimizationAgent is an abstract agent. Not to be used directly.")
|
||||
Reference in New Issue
Block a user