1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 11:40:18 +01:00

pre-release 0.10.0

This commit is contained in:
Gal Novik
2018-08-13 17:11:34 +03:00
parent d44c329bb8
commit 19ca5c24b1
485 changed files with 33292 additions and 16770 deletions

View File

@@ -0,0 +1,114 @@
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import List, Union
import numpy as np
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.shared_variables import SharedRunningStats
from rl_coach.base_parameters import EmbedderScheme
from rl_coach.architectures.tensorflow_components.architecture import batchnorm_activation_dropout
from rl_coach.core_types import InputEmbedding
class InputEmbedder(object):
"""
An input embedder is the first part of the network, which takes the input from the state and produces a vector
embedding by passing it through a neural network. The embedder will mostly be input type dependent, and there
can be multiple embedders in a single network
"""
def __init__(self, input_size: List[int], activation_function=tf.nn.relu,
scheme: EmbedderScheme=None, batchnorm: bool=False, dropout: bool=False,
name: str= "embedder", input_rescaling=1.0, input_offset=0.0, input_clipping=None):
self.name = name
self.input_size = input_size
self.activation_function = activation_function
self.batchnorm = batchnorm
self.dropout = dropout
self.dropout_rate = 0
self.input = None
self.output = None
self.scheme = scheme
self.return_type = InputEmbedding
self.layers = []
self.input_rescaling = input_rescaling
self.input_offset = input_offset
self.input_clipping = input_clipping
def __call__(self, prev_input_placeholder=None):
with tf.variable_scope(self.get_name()):
if prev_input_placeholder is None:
self.input = tf.placeholder("float", shape=[None] + self.input_size, name=self.get_name())
else:
self.input = prev_input_placeholder
self._build_module()
return self.input, self.output
def _build_module(self):
# NOTE: for image inputs, we expect the data format to be of type uint8, so to be memory efficient. we chose not
# to implement the rescaling as an input filters.observation.observation_filter, as this would have caused the
# input to the network to be float, which is 4x more expensive in memory.
# thus causing each saved transition in the memory to also be 4x more pricier.
input_layer = self.input / self.input_rescaling
input_layer -= self.input_offset
# clip input using te given range
if self.input_clipping is not None:
input_layer = tf.clip_by_value(input_layer, self.input_clipping[0], self.input_clipping[1])
self.layers.append(input_layer)
# layers order is conv -> batchnorm -> activation -> dropout
if isinstance(self.scheme, EmbedderScheme):
layers_params = self.schemes[self.scheme]
else:
layers_params = self.scheme
for idx, layer_params in enumerate(layers_params):
self.layers.append(
layer_params(input_layer=self.layers[-1], name='{}_{}'.format(layer_params.__class__.__name__, idx))
)
self.layers.extend(batchnorm_activation_dropout(self.layers[-1], self.batchnorm,
self.activation_function, self.dropout,
self.dropout_rate, idx))
self.output = tf.contrib.layers.flatten(self.layers[-1])
@property
def input_size(self) -> List[int]:
return self._input_size
@input_size.setter
def input_size(self, value: Union[int, List[int]]):
if isinstance(value, np.ndarray) or isinstance(value, tuple):
value = list(value)
elif isinstance(value, int):
value = [value]
if not isinstance(value, list):
raise ValueError((
'input_size expected to be a list, found {value} which has type {type}'
).format(value=value, type=type(value)))
self._input_size = value
@property
def schemes(self):
raise NotImplementedError("Inheriting embedder must define schemes matching its allowed default "
"configurations.")
def get_name(self):
return self.name

View File

@@ -0,0 +1,74 @@
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import List
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.architecture import Conv2d
from rl_coach.base_parameters import EmbedderScheme
from rl_coach.architectures.tensorflow_components.embedders.embedder import InputEmbedder
from rl_coach.core_types import InputImageEmbedding
class ImageEmbedder(InputEmbedder):
"""
An input embedder that performs convolutions on the input and then flattens the result.
The embedder is intended for image like inputs, where the channels are expected to be the last axis.
The embedder also allows custom rescaling of the input prior to the neural network.
"""
schemes = {
EmbedderScheme.Empty:
[],
EmbedderScheme.Shallow:
[
Conv2d([32, 3, 1])
],
# atari dqn
EmbedderScheme.Medium:
[
Conv2d([32, 8, 4]),
Conv2d([64, 4, 2]),
Conv2d([64, 3, 1])
],
# carla
EmbedderScheme.Deep: \
[
Conv2d([32, 5, 2]),
Conv2d([32, 3, 1]),
Conv2d([64, 3, 2]),
Conv2d([64, 3, 1]),
Conv2d([128, 3, 2]),
Conv2d([128, 3, 1]),
Conv2d([256, 3, 2]),
Conv2d([256, 3, 1])
]
}
def __init__(self, input_size: List[int], activation_function=tf.nn.relu,
scheme: EmbedderScheme=EmbedderScheme.Medium, batchnorm: bool=False, dropout: bool=False,
name: str= "embedder", input_rescaling: float=255.0, input_offset: float=0.0, input_clipping=None):
super().__init__(input_size, activation_function, scheme, batchnorm, dropout, name, input_rescaling,
input_offset, input_clipping)
self.return_type = InputImageEmbedding
if len(input_size) != 3 and scheme != EmbedderScheme.Empty:
raise ValueError("Image embedders expect the input size to have 3 dimensions. The given size is: {}"
.format(input_size))

View File

@@ -0,0 +1,64 @@
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import List
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.architecture import Dense
from rl_coach.base_parameters import EmbedderScheme
from rl_coach.architectures.tensorflow_components.embedders.embedder import InputEmbedder
from rl_coach.core_types import InputVectorEmbedding
class VectorEmbedder(InputEmbedder):
"""
An input embedder that is intended for inputs that can be represented as vectors.
The embedder flattens the input, applies several dense layers to it and returns the output.
"""
schemes = {
EmbedderScheme.Empty:
[],
EmbedderScheme.Shallow:
[
Dense([128])
],
# dqn
EmbedderScheme.Medium:
[
Dense([256])
],
# carla
EmbedderScheme.Deep: \
[
Dense([128]),
Dense([128]),
Dense([128])
]
}
def __init__(self, input_size: List[int], activation_function=tf.nn.relu,
scheme: EmbedderScheme=EmbedderScheme.Medium, batchnorm: bool=False, dropout: bool=False,
name: str= "embedder", input_rescaling: float=1.0, input_offset:float=0.0, input_clipping=None):
super().__init__(input_size, activation_function, scheme, batchnorm, dropout, name,
input_rescaling, input_offset, input_clipping)
self.return_type = InputVectorEmbedding
if len(self.input_size) != 1 and scheme != EmbedderScheme.Empty:
raise ValueError("The input size of a vector embedder must contain only a single dimension")