mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
pre-release 0.10.0
This commit is contained in:
165
rl_coach/architectures/tensorflow_components/heads/head.py
Normal file
165
rl_coach/architectures/tensorflow_components/heads/head.py
Normal file
@@ -0,0 +1,165 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
from typing import Type
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from rl_coach.base_parameters import AgentParameters, Parameters
|
||||
from rl_coach.spaces import SpacesDefinition
|
||||
from tensorflow.python.ops.losses.losses_impl import Reduction
|
||||
|
||||
from rl_coach.utils import force_list
|
||||
|
||||
|
||||
# Used to initialize weights for policy and value output layers
|
||||
def normalized_columns_initializer(std=1.0):
|
||||
def _initializer(shape, dtype=None, partition_info=None):
|
||||
out = np.random.randn(*shape).astype(np.float32)
|
||||
out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True))
|
||||
return tf.constant(out)
|
||||
return _initializer
|
||||
|
||||
|
||||
class HeadParameters(Parameters):
|
||||
def __init__(self, parameterized_class: Type['Head'], activation_function: str = 'relu', name: str= 'head'):
|
||||
super().__init__()
|
||||
self.activation_function = activation_function
|
||||
self.name = name
|
||||
self.parameterized_class_name = parameterized_class.__name__
|
||||
|
||||
|
||||
class Head(object):
|
||||
"""
|
||||
A head is the final part of the network. It takes the embedding from the middleware embedder and passes it through
|
||||
a neural network to produce the output of the network. There can be multiple heads in a network, and each one has
|
||||
an assigned loss function. The heads are algorithm dependent.
|
||||
"""
|
||||
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
|
||||
head_idx: int=0, loss_weight: float=1., is_local: bool=True, activation_function: str='relu'):
|
||||
self.head_idx = head_idx
|
||||
self.network_name = network_name
|
||||
self.network_parameters = agent_parameters.network_wrappers[self.network_name]
|
||||
self.name = "head"
|
||||
self.output = []
|
||||
self.loss = []
|
||||
self.loss_type = []
|
||||
self.regularizations = []
|
||||
self.loss_weight = force_list(loss_weight)
|
||||
self.target = []
|
||||
self.importance_weight = []
|
||||
self.input = []
|
||||
self.is_local = is_local
|
||||
self.ap = agent_parameters
|
||||
self.spaces = spaces
|
||||
self.return_type = None
|
||||
self.activation_function = activation_function
|
||||
|
||||
def __call__(self, input_layer):
|
||||
"""
|
||||
Wrapper for building the module graph including scoping and loss creation
|
||||
:param input_layer: the input to the graph
|
||||
:return: the output of the last layer and the target placeholder
|
||||
"""
|
||||
with tf.variable_scope(self.get_name(), initializer=tf.contrib.layers.xavier_initializer()):
|
||||
self._build_module(input_layer)
|
||||
|
||||
self.output = force_list(self.output)
|
||||
self.target = force_list(self.target)
|
||||
self.input = force_list(self.input)
|
||||
self.loss_type = force_list(self.loss_type)
|
||||
self.loss = force_list(self.loss)
|
||||
self.regularizations = force_list(self.regularizations)
|
||||
if self.is_local:
|
||||
self.set_loss()
|
||||
self._post_build()
|
||||
|
||||
if self.is_local:
|
||||
return self.output, self.target, self.input, self.importance_weight
|
||||
else:
|
||||
return self.output, self.input
|
||||
|
||||
def _build_module(self, input_layer):
|
||||
"""
|
||||
Builds the graph of the module
|
||||
This method is called early on from __call__. It is expected to store the graph
|
||||
in self.output.
|
||||
:param input_layer: the input to the graph
|
||||
:return: None
|
||||
"""
|
||||
pass
|
||||
|
||||
def _post_build(self):
|
||||
"""
|
||||
Optional function that allows adding any extra definitions after the head has been fully defined
|
||||
For example, this allows doing additional calculations that are based on the loss
|
||||
:return: None
|
||||
"""
|
||||
pass
|
||||
|
||||
def get_name(self):
|
||||
"""
|
||||
Get a formatted name for the module
|
||||
:return: the formatted name
|
||||
"""
|
||||
return '{}_{}'.format(self.name, self.head_idx)
|
||||
|
||||
def set_loss(self):
|
||||
"""
|
||||
Creates a target placeholder and loss function for each loss_type and regularization
|
||||
:param loss_type: a tensorflow loss function
|
||||
:param scope: the name scope to include the tensors in
|
||||
:return: None
|
||||
"""
|
||||
|
||||
# there are heads that define the loss internally, but we need to create additional placeholders for them
|
||||
for idx in range(len(self.loss)):
|
||||
importance_weight = tf.placeholder('float',
|
||||
[None] + [1] * (len(self.target[idx].shape) - 1),
|
||||
'{}_importance_weight'.format(self.get_name()))
|
||||
self.importance_weight.append(importance_weight)
|
||||
|
||||
# add losses and target placeholder
|
||||
for idx in range(len(self.loss_type)):
|
||||
# create target placeholder
|
||||
target = tf.placeholder('float', self.output[idx].shape, '{}_target'.format(self.get_name()))
|
||||
self.target.append(target)
|
||||
|
||||
# create importance sampling weights placeholder
|
||||
num_target_dims = len(self.target[idx].shape)
|
||||
importance_weight = tf.placeholder('float', [None] + [1] * (num_target_dims - 1),
|
||||
'{}_importance_weight'.format(self.get_name()))
|
||||
self.importance_weight.append(importance_weight)
|
||||
|
||||
# compute the weighted loss. importance_weight weights over the samples in the batch, while self.loss_weight
|
||||
# weights the specific loss of this head against other losses in this head or in other heads
|
||||
loss_weight = self.loss_weight[idx]*importance_weight
|
||||
loss = self.loss_type[idx](self.target[-1], self.output[idx],
|
||||
scope=self.get_name(), reduction=Reduction.NONE, loss_collection=None)
|
||||
|
||||
# the loss is first summed over each sample in the batch and then the mean over the batch is taken
|
||||
loss = tf.reduce_mean(loss_weight*tf.reduce_sum(loss, axis=list(range(1, num_target_dims))))
|
||||
|
||||
# we add the loss to the losses collection and later we will extract it in general_network
|
||||
tf.losses.add_loss(loss)
|
||||
self.loss.append(loss)
|
||||
|
||||
# add regularizations
|
||||
for regularization in self.regularizations:
|
||||
self.loss.append(regularization)
|
||||
|
||||
@classmethod
|
||||
def path(cls):
|
||||
return cls.__class__.__name__
|
||||
Reference in New Issue
Block a user