mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
pre-release 0.10.0
This commit is contained in:
@@ -0,0 +1,86 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
from typing import Union, List
|
||||
|
||||
import tensorflow as tf
|
||||
from rl_coach.architectures.tensorflow_components.middlewares.middleware import Middleware, MiddlewareParameters
|
||||
from rl_coach.base_parameters import MiddlewareScheme
|
||||
|
||||
from rl_coach.architectures.tensorflow_components.architecture import batchnorm_activation_dropout, Dense
|
||||
from rl_coach.core_types import Middleware_FC_Embedding
|
||||
|
||||
|
||||
class FCMiddlewareParameters(MiddlewareParameters):
|
||||
def __init__(self, activation_function='relu',
|
||||
scheme: Union[List, MiddlewareScheme] = MiddlewareScheme.Medium,
|
||||
batchnorm: bool = False, dropout: bool = False,
|
||||
name="middleware_fc_embedder"):
|
||||
super().__init__(parameterized_class=FCMiddleware, activation_function=activation_function,
|
||||
scheme=scheme, batchnorm=batchnorm, dropout=dropout, name=name)
|
||||
|
||||
|
||||
class FCMiddleware(Middleware):
|
||||
schemes = {
|
||||
MiddlewareScheme.Empty:
|
||||
[],
|
||||
|
||||
# ppo
|
||||
MiddlewareScheme.Shallow:
|
||||
[
|
||||
Dense([64])
|
||||
],
|
||||
|
||||
# dqn
|
||||
MiddlewareScheme.Medium:
|
||||
[
|
||||
Dense([512])
|
||||
],
|
||||
|
||||
MiddlewareScheme.Deep: \
|
||||
[
|
||||
Dense([128]),
|
||||
Dense([128]),
|
||||
Dense([128])
|
||||
]
|
||||
}
|
||||
|
||||
def __init__(self, activation_function=tf.nn.relu,
|
||||
scheme: MiddlewareScheme = MiddlewareScheme.Medium,
|
||||
batchnorm: bool = False, dropout: bool = False,
|
||||
name="middleware_fc_embedder"):
|
||||
super().__init__(activation_function=activation_function, batchnorm=batchnorm,
|
||||
dropout=dropout, scheme=scheme, name=name)
|
||||
self.return_type = Middleware_FC_Embedding
|
||||
self.layers = []
|
||||
|
||||
def _build_module(self):
|
||||
self.layers.append(self.input)
|
||||
|
||||
if isinstance(self.scheme, MiddlewareScheme):
|
||||
layers_params = FCMiddleware.schemes[self.scheme]
|
||||
else:
|
||||
layers_params = self.scheme
|
||||
for idx, layer_params in enumerate(layers_params):
|
||||
self.layers.append(
|
||||
layer_params(self.layers[-1], name='{}_{}'.format(layer_params.__class__.__name__, idx))
|
||||
)
|
||||
|
||||
self.layers.extend(batchnorm_activation_dropout(self.layers[-1], self.batchnorm,
|
||||
self.activation_function, self.dropout,
|
||||
self.dropout_rate, idx))
|
||||
|
||||
self.output = self.layers[-1]
|
||||
|
||||
Reference in New Issue
Block a user