mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
pre-release 0.10.0
This commit is contained in:
@@ -0,0 +1,113 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from rl_coach.architectures.tensorflow_components.middlewares.middleware import Middleware, MiddlewareParameters
|
||||
from rl_coach.base_parameters import MiddlewareScheme
|
||||
|
||||
from rl_coach.architectures.tensorflow_components.architecture import batchnorm_activation_dropout
|
||||
from rl_coach.core_types import Middleware_LSTM_Embedding
|
||||
|
||||
|
||||
class LSTMMiddlewareParameters(MiddlewareParameters):
|
||||
def __init__(self, activation_function='relu', number_of_lstm_cells=256,
|
||||
scheme: MiddlewareScheme = MiddlewareScheme.Medium,
|
||||
batchnorm: bool = False, dropout: bool = False,
|
||||
name="middleware_lstm_embedder"):
|
||||
super().__init__(parameterized_class=LSTMMiddleware, activation_function=activation_function,
|
||||
scheme=scheme, batchnorm=batchnorm, dropout=dropout, name=name)
|
||||
self.number_of_lstm_cells = number_of_lstm_cells
|
||||
|
||||
|
||||
class LSTMMiddleware(Middleware):
|
||||
schemes = {
|
||||
MiddlewareScheme.Empty:
|
||||
[],
|
||||
|
||||
# ppo
|
||||
MiddlewareScheme.Shallow:
|
||||
[
|
||||
[64]
|
||||
],
|
||||
|
||||
# dqn
|
||||
MiddlewareScheme.Medium:
|
||||
[
|
||||
[512]
|
||||
],
|
||||
|
||||
MiddlewareScheme.Deep: \
|
||||
[
|
||||
[128],
|
||||
[128],
|
||||
[128]
|
||||
]
|
||||
}
|
||||
|
||||
def __init__(self, activation_function=tf.nn.relu, number_of_lstm_cells: int=256,
|
||||
scheme: MiddlewareScheme = MiddlewareScheme.Medium,
|
||||
batchnorm: bool = False, dropout: bool = False,
|
||||
name="middleware_lstm_embedder"):
|
||||
super().__init__(activation_function=activation_function, batchnorm=batchnorm,
|
||||
dropout=dropout, scheme=scheme, name=name)
|
||||
self.return_type = Middleware_LSTM_Embedding
|
||||
self.number_of_lstm_cells = number_of_lstm_cells
|
||||
self.layers = []
|
||||
|
||||
def _build_module(self):
|
||||
"""
|
||||
self.state_in: tuple of placeholders containing the initial state
|
||||
self.state_out: tuple of output state
|
||||
|
||||
todo: it appears that the shape of the output is batch, feature
|
||||
the code here seems to be slicing off the first element in the batch
|
||||
which would definitely be wrong. need to double check the shape
|
||||
"""
|
||||
|
||||
self.layers.append(self.input)
|
||||
|
||||
# optionally insert some dense layers before the LSTM
|
||||
if isinstance(self.scheme, MiddlewareScheme):
|
||||
layers_params = LSTMMiddleware.schemes[self.scheme]
|
||||
else:
|
||||
layers_params = self.scheme
|
||||
for idx, layer_params in enumerate(layers_params):
|
||||
self.layers.append(
|
||||
tf.layers.dense(self.layers[-1], layer_params[0], name='fc{}'.format(idx))
|
||||
)
|
||||
|
||||
self.layers.extend(batchnorm_activation_dropout(self.layers[-1], self.batchnorm,
|
||||
self.activation_function, self.dropout,
|
||||
self.dropout_rate, idx))
|
||||
|
||||
# add the LSTM layer
|
||||
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(self.number_of_lstm_cells, state_is_tuple=True)
|
||||
self.c_init = np.zeros((1, lstm_cell.state_size.c), np.float32)
|
||||
self.h_init = np.zeros((1, lstm_cell.state_size.h), np.float32)
|
||||
self.state_init = [self.c_init, self.h_init]
|
||||
self.c_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.c])
|
||||
self.h_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.h])
|
||||
self.state_in = (self.c_in, self.h_in)
|
||||
rnn_in = tf.expand_dims(self.layers[-1], [0])
|
||||
step_size = tf.shape(self.layers[-1])[:1]
|
||||
state_in = tf.nn.rnn_cell.LSTMStateTuple(self.c_in, self.h_in)
|
||||
lstm_outputs, lstm_state = tf.nn.dynamic_rnn(
|
||||
lstm_cell, rnn_in, initial_state=state_in, sequence_length=step_size, time_major=False)
|
||||
lstm_c, lstm_h = lstm_state
|
||||
self.state_out = (lstm_c[:1, :], lstm_h[:1, :])
|
||||
self.output = tf.reshape(lstm_outputs, [-1, self.number_of_lstm_cells])
|
||||
Reference in New Issue
Block a user