mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 03:30:19 +01:00
pre-release 0.10.0
This commit is contained in:
129
rl_coach/dashboard_components/signals_file_base.py
Normal file
129
rl_coach/dashboard_components/signals_file_base.py
Normal file
@@ -0,0 +1,129 @@
|
||||
import numpy as np
|
||||
from bokeh.models import ColumnDataSource
|
||||
|
||||
from rl_coach.dashboard_components.signals import Signal
|
||||
from rl_coach.dashboard_components.globals import x_axis, x_axis_options, show_spinner
|
||||
|
||||
|
||||
class SignalsFileBase:
|
||||
def __init__(self, plot):
|
||||
self.plot = plot
|
||||
self.full_csv_path = ""
|
||||
self.dir = ""
|
||||
self.filename = ""
|
||||
self.signals_averaging_window = 1
|
||||
self.show_bollinger_bands = False
|
||||
self.csv = None
|
||||
self.bokeh_source = None
|
||||
self.bokeh_source_orig = None
|
||||
self.last_modified = None
|
||||
self.signals = {}
|
||||
self.separate_files = False
|
||||
self.last_reload_data_fix = False
|
||||
|
||||
def load_csv(self):
|
||||
pass
|
||||
|
||||
def update_x_axis_index(self):
|
||||
global x_axis
|
||||
self.bokeh_source_orig.data['index'] = self.bokeh_source_orig.data[x_axis[0]]
|
||||
self.bokeh_source.data['index'] = self.bokeh_source.data[x_axis[0]]
|
||||
|
||||
def toggle_y_axis(self, signal_name=None):
|
||||
if signal_name and signal_name in self.signals.keys():
|
||||
self.signals[signal_name].toggle_axis()
|
||||
else:
|
||||
for signal in self.signals.values():
|
||||
if signal.selected:
|
||||
signal.toggle_axis()
|
||||
|
||||
def update_source_and_signals(self):
|
||||
# create bokeh data sources
|
||||
self.bokeh_source_orig = ColumnDataSource(self.csv)
|
||||
|
||||
if self.bokeh_source is None:
|
||||
self.bokeh_source = ColumnDataSource(self.csv)
|
||||
self.update_x_axis_index()
|
||||
else:
|
||||
self.update_x_axis_index()
|
||||
# smooth the data if necessary
|
||||
self.change_averaging_window(self.signals_averaging_window, force=True)
|
||||
|
||||
# create all the signals
|
||||
if len(self.signals.keys()) == 0:
|
||||
self.signals = {}
|
||||
unique_signal_names = []
|
||||
for name in self.csv.columns:
|
||||
if len(name.split('/')) == 1:
|
||||
unique_signal_names.append(name)
|
||||
else:
|
||||
unique_signal_names.append('/'.join(name.split('/')[:-1]))
|
||||
unique_signal_names = list(set(unique_signal_names))
|
||||
for signal_name in unique_signal_names:
|
||||
self.signals[signal_name] = Signal(signal_name, self, self.plot)
|
||||
|
||||
def load(self):
|
||||
self.load_csv()
|
||||
self.update_source_and_signals()
|
||||
|
||||
def reload_data(self):
|
||||
# this function is a workaround to reload the data of all the signals
|
||||
# if the data doesn't change, bokeh does not refresh the line
|
||||
temp_data = self.bokeh_source.data.copy()
|
||||
for col in self.bokeh_source.data.keys():
|
||||
if not self.last_reload_data_fix:
|
||||
temp_data[col] = temp_data[col][:-1]
|
||||
self.last_reload_data_fix = not self.last_reload_data_fix
|
||||
self.bokeh_source.data = temp_data
|
||||
|
||||
def change_averaging_window(self, new_size, force=False, signals=None):
|
||||
if force or self.signals_averaging_window != new_size:
|
||||
self.signals_averaging_window = new_size
|
||||
win = np.ones(new_size) / new_size
|
||||
temp_data = self.bokeh_source_orig.data.copy()
|
||||
for col in self.bokeh_source.data.keys():
|
||||
if col == 'index' or col in x_axis_options \
|
||||
or (signals and not any(col in signal for signal in signals)):
|
||||
temp_data[col] = temp_data[col][:-new_size]
|
||||
continue
|
||||
temp_data[col] = np.convolve(self.bokeh_source_orig.data[col], win, mode='same')[:-new_size]
|
||||
self.bokeh_source.data = temp_data
|
||||
|
||||
# smooth bollinger bands
|
||||
for signal in self.signals.values():
|
||||
if signal.has_bollinger_bands:
|
||||
signal.set_bands_source()
|
||||
|
||||
def hide_all_signals(self):
|
||||
for signal_name in self.signals.keys():
|
||||
self.set_signal_selection(signal_name, False)
|
||||
|
||||
def set_signal_selection(self, signal_name, val):
|
||||
self.signals[signal_name].set_selected(val)
|
||||
|
||||
def change_bollinger_bands_state(self, new_state):
|
||||
self.show_bollinger_bands = new_state
|
||||
for signal in self.signals.values():
|
||||
signal.change_bollinger_bands_state(new_state)
|
||||
|
||||
def file_was_modified_on_disk(self):
|
||||
pass
|
||||
|
||||
def get_range_of_selected_signals_on_axis(self, axis, selected_signal=None):
|
||||
max_val = -float('inf')
|
||||
min_val = float('inf')
|
||||
for signal in self.signals.values():
|
||||
if (selected_signal and signal.name == selected_signal) or (signal.selected and signal.axis == axis):
|
||||
max_val = max(max_val, signal.max_val)
|
||||
min_val = min(min_val, signal.min_val)
|
||||
return min_val, max_val
|
||||
|
||||
def get_selected_signals(self):
|
||||
signals = []
|
||||
for signal in self.signals.values():
|
||||
if signal.selected:
|
||||
signals.append(signal)
|
||||
return signals
|
||||
|
||||
def show_files_separately(self, val):
|
||||
pass
|
||||
Reference in New Issue
Block a user