mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
pre-release 0.10.0
This commit is contained in:
162
rl_coach/environments/control_suite_environment.py
Normal file
162
rl_coach/environments/control_suite_environment.py
Normal file
@@ -0,0 +1,162 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
|
||||
import random
|
||||
from enum import Enum
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
try:
|
||||
from dm_control import suite
|
||||
from dm_control.suite.wrappers import pixels
|
||||
except ImportError:
|
||||
from rl_coach.logger import failed_imports
|
||||
failed_imports.append("DeepMind Control Suite")
|
||||
|
||||
from rl_coach.base_parameters import VisualizationParameters
|
||||
from rl_coach.environments.environment import Environment, EnvironmentParameters, LevelSelection
|
||||
from rl_coach.filters.filter import NoInputFilter, NoOutputFilter
|
||||
from rl_coach.spaces import BoxActionSpace, ImageObservationSpace, VectorObservationSpace, StateSpace
|
||||
|
||||
|
||||
class ObservationType(Enum):
|
||||
Measurements = 1
|
||||
Image = 2
|
||||
Image_and_Measurements = 3
|
||||
|
||||
|
||||
# Parameters
|
||||
class ControlSuiteEnvironmentParameters(EnvironmentParameters):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.observation_type = ObservationType.Measurements
|
||||
self.default_input_filter = ControlSuiteInputFilter
|
||||
self.default_output_filter = ControlSuiteOutputFilter
|
||||
|
||||
@property
|
||||
def path(self):
|
||||
return 'rl_coach.environments.control_suite_environment:ControlSuiteEnvironment'
|
||||
|
||||
|
||||
"""
|
||||
ControlSuite Environment Components
|
||||
"""
|
||||
ControlSuiteInputFilter = NoInputFilter()
|
||||
ControlSuiteOutputFilter = NoOutputFilter()
|
||||
|
||||
control_suite_envs = {':'.join(env): ':'.join(env) for env in suite.BENCHMARKING}
|
||||
|
||||
|
||||
# Environment
|
||||
class ControlSuiteEnvironment(Environment):
|
||||
def __init__(self, level: LevelSelection, frame_skip: int, visualization_parameters: VisualizationParameters,
|
||||
seed: Union[None, int]=None, human_control: bool=False,
|
||||
observation_type: ObservationType=ObservationType.Measurements,
|
||||
custom_reward_threshold: Union[int, float]=None, **kwargs):
|
||||
super().__init__(level, seed, frame_skip, human_control, custom_reward_threshold, visualization_parameters)
|
||||
|
||||
self.observation_type = observation_type
|
||||
|
||||
# load and initialize environment
|
||||
domain_name, task_name = self.env_id.split(":")
|
||||
self.env = suite.load(domain_name=domain_name, task_name=task_name)
|
||||
|
||||
if observation_type != ObservationType.Measurements:
|
||||
self.env = pixels.Wrapper(self.env, pixels_only=observation_type == ObservationType.Image)
|
||||
|
||||
# seed
|
||||
if self.seed is not None:
|
||||
np.random.seed(self.seed)
|
||||
random.seed(self.seed)
|
||||
|
||||
self.state_space = StateSpace({})
|
||||
|
||||
# image observations
|
||||
if observation_type != ObservationType.Measurements:
|
||||
self.state_space['pixels'] = ImageObservationSpace(shape=self.env.observation_spec()['pixels'].shape,
|
||||
high=255)
|
||||
|
||||
# measurements observations
|
||||
if observation_type != ObservationType.Image:
|
||||
measurements_space_size = 0
|
||||
measurements_names = []
|
||||
for observation_space_name, observation_space in self.env.observation_spec().items():
|
||||
if len(observation_space.shape) == 0:
|
||||
measurements_space_size += 1
|
||||
measurements_names.append(observation_space_name)
|
||||
elif len(observation_space.shape) == 1:
|
||||
measurements_space_size += observation_space.shape[0]
|
||||
measurements_names.extend(["{}_{}".format(observation_space_name, i) for i in
|
||||
range(observation_space.shape[0])])
|
||||
self.state_space['measurements'] = VectorObservationSpace(shape=measurements_space_size,
|
||||
measurements_names=measurements_names)
|
||||
|
||||
# actions
|
||||
self.action_space = BoxActionSpace(
|
||||
shape=self.env.action_spec().shape[0],
|
||||
low=self.env.action_spec().minimum,
|
||||
high=self.env.action_spec().maximum
|
||||
)
|
||||
|
||||
# initialize the state by getting a new state from the environment
|
||||
self.reset_internal_state(True)
|
||||
|
||||
# render
|
||||
if self.is_rendered:
|
||||
image = self.get_rendered_image()
|
||||
scale = 1
|
||||
if self.human_control:
|
||||
scale = 2
|
||||
if not self.native_rendering:
|
||||
self.renderer.create_screen(image.shape[1]*scale, image.shape[0]*scale)
|
||||
|
||||
def _update_state(self):
|
||||
self.state = {}
|
||||
|
||||
if self.observation_type != ObservationType.Measurements:
|
||||
self.pixels = self.last_result.observation['pixels']
|
||||
self.state['pixels'] = self.pixels
|
||||
|
||||
if self.observation_type != ObservationType.Image:
|
||||
self.measurements = np.array([])
|
||||
for sub_observation in self.last_result.observation.values():
|
||||
if isinstance(sub_observation, np.ndarray) and len(sub_observation.shape) == 1:
|
||||
self.measurements = np.concatenate((self.measurements, sub_observation))
|
||||
else:
|
||||
self.measurements = np.concatenate((self.measurements, np.array([sub_observation])))
|
||||
self.state['measurements'] = self.measurements
|
||||
|
||||
self.reward = self.last_result.reward if self.last_result.reward is not None else 0
|
||||
|
||||
self.done = self.last_result.last()
|
||||
|
||||
def _take_action(self, action):
|
||||
if type(self.action_space) == BoxActionSpace:
|
||||
action = self.action_space.clip_action_to_space(action)
|
||||
|
||||
self.last_result = self.env.step(action)
|
||||
|
||||
def _restart_environment_episode(self, force_environment_reset=False):
|
||||
self.last_result = self.env.reset()
|
||||
|
||||
def _render(self):
|
||||
pass
|
||||
|
||||
def get_rendered_image(self):
|
||||
return self.env.physics.render(camera_id=0)
|
||||
Reference in New Issue
Block a user