mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 03:30:19 +01:00
pre-release 0.10.0
This commit is contained in:
185
rl_coach/environments/mujoco/pendulum_with_goals.py
Normal file
185
rl_coach/environments/mujoco/pendulum_with_goals.py
Normal file
@@ -0,0 +1,185 @@
|
||||
import numpy as np
|
||||
import gym
|
||||
import os
|
||||
from gym import spaces
|
||||
from gym.envs.registration import EnvSpec
|
||||
|
||||
from mujoco_py import load_model_from_path, MjSim , MjViewer, MjRenderContextOffscreen
|
||||
|
||||
|
||||
class PendulumWithGoals(gym.Env):
|
||||
metadata = {
|
||||
'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': 30
|
||||
}
|
||||
|
||||
def __init__(self, goal_reaching_thresholds=np.array([0.075, 0.075, 0.75]),
|
||||
goal_not_reached_penalty=-1, goal_reached_reward=0, terminate_on_goal_reaching=True,
|
||||
time_limit=1000, frameskip=1, random_goals_instead_of_standing_goal=False,
|
||||
polar_coordinates: bool=False):
|
||||
super().__init__()
|
||||
dir = os.path.dirname(__file__)
|
||||
model = load_model_from_path(dir + "/pendulum_with_goals.xml")
|
||||
|
||||
self.sim = MjSim(model)
|
||||
self.viewer = None
|
||||
self.rgb_viewer = None
|
||||
|
||||
self.frameskip = frameskip
|
||||
self.goal = None
|
||||
self.goal_reaching_thresholds = goal_reaching_thresholds
|
||||
self.goal_not_reached_penalty = goal_not_reached_penalty
|
||||
self.goal_reached_reward = goal_reached_reward
|
||||
self.terminate_on_goal_reaching = terminate_on_goal_reaching
|
||||
self.time_limit = time_limit
|
||||
self.current_episode_steps_counter = 0
|
||||
self.random_goals_instead_of_standing_goal = random_goals_instead_of_standing_goal
|
||||
self.polar_coordinates = polar_coordinates
|
||||
|
||||
# spaces definition
|
||||
self.action_space = spaces.Box(low=-self.sim.model.actuator_ctrlrange[:, 1],
|
||||
high=self.sim.model.actuator_ctrlrange[:, 1],
|
||||
dtype=np.float32)
|
||||
if self.polar_coordinates:
|
||||
self.observation_space = spaces.Dict({
|
||||
"observation": spaces.Box(low=np.array([-np.pi, -15]),
|
||||
high=np.array([np.pi, 15]),
|
||||
dtype=np.float32),
|
||||
"desired_goal": spaces.Box(low=np.array([-np.pi, -15]),
|
||||
high=np.array([np.pi, 15]),
|
||||
dtype=np.float32),
|
||||
"achieved_goal": spaces.Box(low=np.array([-np.pi, -15]),
|
||||
high=np.array([np.pi, 15]),
|
||||
dtype=np.float32)
|
||||
})
|
||||
else:
|
||||
self.observation_space = spaces.Dict({
|
||||
"observation": spaces.Box(low=np.array([-1, -1, -15]),
|
||||
high=np.array([1, 1, 15]),
|
||||
dtype=np.float32),
|
||||
"desired_goal": spaces.Box(low=np.array([-1, -1, -15]),
|
||||
high=np.array([1, 1, 15]),
|
||||
dtype=np.float32),
|
||||
"achieved_goal": spaces.Box(low=np.array([-1, -1, -15]),
|
||||
high=np.array([1, 1, 15]),
|
||||
dtype=np.float32)
|
||||
})
|
||||
|
||||
self.spec = EnvSpec('PendulumWithGoals-v0')
|
||||
self.spec.reward_threshold = self.goal_not_reached_penalty * self.time_limit
|
||||
|
||||
self.reset()
|
||||
|
||||
def _goal_reached(self):
|
||||
observation = self._get_obs()
|
||||
if np.any(np.abs(observation['achieved_goal'] - observation['desired_goal']) > self.goal_reaching_thresholds):
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
|
||||
def _terminate(self):
|
||||
if (self._goal_reached() and self.terminate_on_goal_reaching) or \
|
||||
self.current_episode_steps_counter >= self.time_limit:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def _reward(self):
|
||||
if self._goal_reached():
|
||||
return self.goal_reached_reward
|
||||
else:
|
||||
return self.goal_not_reached_penalty
|
||||
|
||||
def step(self, action):
|
||||
self.sim.data.ctrl[:] = action
|
||||
for _ in range(self.frameskip):
|
||||
self.sim.step()
|
||||
|
||||
self.current_episode_steps_counter += 1
|
||||
|
||||
state = self._get_obs()
|
||||
|
||||
# visualize the angular velocities
|
||||
state_velocity = np.copy(state['observation'][-1] / 20)
|
||||
goal_velocity = self.goal[-1] / 20
|
||||
self.sim.model.site_size[2] = np.array([0.01, 0.01, state_velocity])
|
||||
self.sim.data.mocap_pos[2] = np.array([0.85, 0, 0.75 + state_velocity])
|
||||
self.sim.model.site_size[3] = np.array([0.01, 0.01, goal_velocity])
|
||||
self.sim.data.mocap_pos[3] = np.array([1.15, 0, 0.75 + goal_velocity])
|
||||
|
||||
return state, self._reward(), self._terminate(), {}
|
||||
|
||||
def _get_obs(self):
|
||||
|
||||
"""
|
||||
y
|
||||
|
||||
^
|
||||
|____
|
||||
| /
|
||||
| /
|
||||
|~/
|
||||
|/
|
||||
--------> x
|
||||
|
||||
"""
|
||||
|
||||
# observation
|
||||
angle = self.sim.data.qpos
|
||||
angular_velocity = self.sim.data.qvel
|
||||
if self.polar_coordinates:
|
||||
observation = np.concatenate([angle - np.pi, angular_velocity])
|
||||
else:
|
||||
x = np.sin(angle)
|
||||
y = np.cos(angle) # qpos is the angle relative to a standing pole
|
||||
observation = np.concatenate([x, y, angular_velocity])
|
||||
|
||||
return {
|
||||
"observation": observation,
|
||||
"desired_goal": self.goal,
|
||||
"achieved_goal": observation
|
||||
}
|
||||
|
||||
def reset(self):
|
||||
self.current_episode_steps_counter = 0
|
||||
|
||||
# set initial state
|
||||
angle = np.random.uniform(np.pi / 4, 7 * np.pi / 4)
|
||||
angular_velocity = np.random.uniform(-0.05, 0.05)
|
||||
self.sim.data.qpos[0] = angle
|
||||
self.sim.data.qvel[0] = angular_velocity
|
||||
self.sim.step()
|
||||
|
||||
# goal
|
||||
if self.random_goals_instead_of_standing_goal:
|
||||
angle_target = np.random.uniform(-np.pi / 8, np.pi / 8)
|
||||
angular_velocity_target = np.random.uniform(-0.2, 0.2)
|
||||
else:
|
||||
angle_target = 0
|
||||
angular_velocity_target = 0
|
||||
|
||||
# convert target values to goal
|
||||
x_target = np.sin(angle_target)
|
||||
y_target = np.cos(angle_target)
|
||||
if self.polar_coordinates:
|
||||
self.goal = np.array([angle_target - np.pi, angular_velocity_target])
|
||||
else:
|
||||
self.goal = np.array([x_target, y_target, angular_velocity_target])
|
||||
|
||||
# visualize the goal
|
||||
self.sim.data.mocap_pos[0] = [x_target, 0, y_target]
|
||||
|
||||
return self._get_obs()
|
||||
|
||||
def render(self, mode='human', close=False):
|
||||
if mode == 'human':
|
||||
if self.viewer is None:
|
||||
self.viewer = MjViewer(self.sim)
|
||||
self.viewer.render()
|
||||
elif mode == 'rgb_array':
|
||||
if self.rgb_viewer is None:
|
||||
self.rgb_viewer = MjRenderContextOffscreen(self.sim, 0)
|
||||
self.rgb_viewer.render(500, 500)
|
||||
# window size used for old mujoco-py:
|
||||
data = self.rgb_viewer.read_pixels(500, 500, depth=False)
|
||||
# original image is upside-down, so flip it
|
||||
return data[::-1, :, :]
|
||||
Reference in New Issue
Block a user