1
0
mirror of https://github.com/gryf/coach.git synced 2026-02-18 15:35:56 +01:00

pre-release 0.10.0

This commit is contained in:
Gal Novik
2018-08-13 17:11:34 +03:00
parent d44c329bb8
commit 19ca5c24b1
485 changed files with 33292 additions and 16770 deletions

View File

@@ -0,0 +1,82 @@
import numpy as np
import gym
from gym import spaces
import random
class BitFlip(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': 30
}
def __init__(self, bit_length=16, max_steps=None, mean_zero=False):
super(BitFlip, self).__init__()
if bit_length < 1:
raise ValueError('bit_length must be >= 1, found {}'.format(bit_length))
self.bit_length = bit_length
self.mean_zero = mean_zero
if max_steps is None:
# default to bit_length
self.max_steps = bit_length
elif max_steps == 0:
self.max_steps = None
else:
self.max_steps = max_steps
# spaces documentation: https://gym.openai.com/docs/
self.action_space = spaces.Discrete(bit_length)
self.observation_space = spaces.Dict({
'state': spaces.Box(low=0, high=1, shape=(bit_length, )),
'desired_goal': spaces.Box(low=0, high=1, shape=(bit_length, )),
'achieved_goal': spaces.Box(low=0, high=1, shape=(bit_length, ))
})
self.reset()
def _terminate(self):
return (self.state == self.goal).all() or self.steps >= self.max_steps
def _reward(self):
return -1 if (self.state != self.goal).any() else 0
def step(self, action):
# action is an int in the range [0, self.bit_length)
self.state[action] = int(not self.state[action])
self.steps += 1
return (self._get_obs(), self._reward(), self._terminate(), {})
def reset(self):
self.steps = 0
self.state = np.array([random.choice([1, 0]) for _ in range(self.bit_length)])
# make sure goal is not the initial state
self.goal = self.state
while (self.goal == self.state).all():
self.goal = np.array([random.choice([1, 0]) for _ in range(self.bit_length)])
return self._get_obs()
def _mean_zero(self, x):
if self.mean_zero:
return (x - 0.5) / 0.5
else:
return x
def _get_obs(self):
return {
'state': self._mean_zero(self.state),
'desired_goal': self._mean_zero(self.goal),
'achieved_goal': self._mean_zero(self.state)
}
def render(self, mode='human', close=False):
observation = np.zeros((20, 20 * self.bit_length, 3))
for bit_idx, (state_bit, goal_bit) in enumerate(zip(self.state, self.goal)):
# green if the bit matches
observation[:, bit_idx * 20:(bit_idx + 1) * 20, 1] = (state_bit == goal_bit) * 255
# red if the bit doesn't match
observation[:, bit_idx * 20:(bit_idx + 1) * 20, 0] = (state_bit != goal_bit) * 255
return observation

View File

@@ -0,0 +1,126 @@
import numpy as np
import gym
from gym import spaces
from enum import Enum
class ExplorationChain(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': 30
}
class ObservationType(Enum):
OneHot = 0
Therm = 1
def __init__(self, chain_length=16, start_state=1, max_steps=None, observation_type=ObservationType.Therm,
left_state_reward=1/1000, right_state_reward=1, simple_render=True):
super().__init__()
if chain_length <= 3:
raise ValueError('Chain length must be > 3, found {}'.format(chain_length))
if not 0 <= start_state < chain_length:
raise ValueError('The start state should be within the chain bounds, found {}'.format(start_state))
self.chain_length = chain_length
self.start_state = start_state
self.max_steps = max_steps
self.observation_type = observation_type
self.left_state_reward = left_state_reward
self.right_state_reward = right_state_reward
self.simple_render = simple_render
# spaces documentation: https://gym.openai.com/docs/
self.action_space = spaces.Discrete(2) # 0 -> Go left, 1 -> Go right
self.observation_space = spaces.Box(0, 1, shape=(chain_length,))#spaces.MultiBinary(chain_length)
self.reset()
def _terminate(self):
return self.steps >= self.max_steps
def _reward(self):
if self.state == 0:
return self.left_state_reward
elif self.state == self.chain_length - 1:
return self.right_state_reward
else:
return 0
def step(self, action):
# action is 0 or 1
if action == 0:
if 0 < self.state:
self.state -= 1
elif action == 1:
if self.state < self.chain_length - 1:
self.state += 1
else:
raise ValueError("An invalid action was given. The available actions are - 0 or 1, found {}".format(action))
self.steps += 1
return self._get_obs(), self._reward(), self._terminate(), {}
def reset(self):
self.steps = 0
self.state = self.start_state
return self._get_obs()
def _get_obs(self):
self.observation = np.zeros((self.chain_length,))
if self.observation_type == self.ObservationType.OneHot:
self.observation[self.state] = 1
elif self.observation_type == self.ObservationType.Therm:
self.observation[:(self.state+1)] = 1
return self.observation
def render(self, mode='human', close=False):
if self.simple_render:
observation = np.zeros((20, 20*self.chain_length))
observation[:, self.state*20:(self.state+1)*20] = 255
return observation
else:
# lazy loading of networkx and matplotlib to allow using the environment without installing them if
# necessary
import networkx as nx
from networkx.drawing.nx_agraph import graphviz_layout
import matplotlib.pyplot as plt
if not hasattr(self, 'G'):
self.states = list(range(self.chain_length))
self.G = nx.DiGraph(directed=True)
for i, origin_state in enumerate(self.states):
if i < self.chain_length - 1:
self.G.add_edge(origin_state,
origin_state + 1,
weight=0.5)
if i > 0:
self.G.add_edge(origin_state,
origin_state - 1,
weight=0.5, )
if i == 0 or i < self.chain_length - 1:
self.G.add_edge(origin_state,
origin_state,
weight=0.5, )
fig = plt.gcf()
if np.all(fig.get_size_inches() != [10, 2]):
fig.set_size_inches(5, 1)
color = ['y']*(len(self.G))
color[self.state] = 'r'
options = {
'node_color': color,
'node_size': 50,
'width': 1,
'arrowstyle': '-|>',
'arrowsize': 5,
'font_size': 6
}
pos = graphviz_layout(self.G, prog='dot', args='-Grankdir=LR')
nx.draw_networkx(self.G, pos, arrows=True, **options)
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
return data