mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
pre-release 0.10.0
This commit is contained in:
100
rl_coach/exploration_policies/truncated_normal.py
Normal file
100
rl_coach/exploration_policies/truncated_normal.py
Normal file
@@ -0,0 +1,100 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
from rl_coach.schedules import Schedule, LinearSchedule
|
||||
from scipy.stats import truncnorm
|
||||
from rl_coach.spaces import ActionSpace, BoxActionSpace
|
||||
|
||||
from rl_coach.core_types import RunPhase, ActionType
|
||||
from rl_coach.exploration_policies.exploration_policy import ExplorationPolicy, ExplorationParameters
|
||||
|
||||
|
||||
class TruncatedNormalParameters(ExplorationParameters):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.noise_percentage_schedule = LinearSchedule(0.1, 0.1, 50000)
|
||||
self.evaluation_noise_percentage = 0.05
|
||||
self.clip_low = 0
|
||||
self.clip_high = 1
|
||||
|
||||
@property
|
||||
def path(self):
|
||||
return 'rl_coach.exploration_policies.truncated_normal:TruncatedNormal'
|
||||
|
||||
|
||||
class TruncatedNormal(ExplorationPolicy):
|
||||
def __init__(self, action_space: ActionSpace, noise_percentage_schedule: Schedule,
|
||||
evaluation_noise_percentage: float, clip_low: float, clip_high: float):
|
||||
"""
|
||||
:param action_space: the action space used by the environment
|
||||
:param noise_percentage_schedule: the schedule for the noise variance percentage relative to the absolute range
|
||||
of the action space
|
||||
:param evaluation_noise_percentage: the noise variance percentage that will be used during evaluation phases
|
||||
"""
|
||||
super().__init__(action_space)
|
||||
self.noise_percentage_schedule = noise_percentage_schedule
|
||||
self.evaluation_noise_percentage = evaluation_noise_percentage
|
||||
self.clip_low = clip_low
|
||||
self.clip_high = clip_high
|
||||
|
||||
if not isinstance(action_space, BoxActionSpace):
|
||||
raise ValueError("Truncated normal exploration works only for continuous controls."
|
||||
"The given action space is of type: {}".format(action_space.__class__.__name__))
|
||||
|
||||
if not np.all(-np.inf < action_space.high) or not np.all(action_space.high < np.inf)\
|
||||
or not np.all(-np.inf < action_space.low) or not np.all(action_space.low < np.inf):
|
||||
raise ValueError("Additive noise exploration requires bounded actions")
|
||||
|
||||
# TODO: allow working with unbounded actions by defining the noise in terms of range and not percentage
|
||||
|
||||
def get_action(self, action_values: List[ActionType]) -> ActionType:
|
||||
# set the current noise percentage
|
||||
if self.phase == RunPhase.TEST:
|
||||
current_noise_precentage = self.evaluation_noise_percentage
|
||||
else:
|
||||
current_noise_precentage = self.noise_percentage_schedule.current_value
|
||||
|
||||
# scale the noise to the action space range
|
||||
action_values_std = current_noise_precentage * (self.action_space.high - self.action_space.low)
|
||||
|
||||
# extract the mean values
|
||||
if isinstance(action_values, list):
|
||||
# the action values are expected to be a list with the action mean and optionally the action stdev
|
||||
action_values_mean = action_values[0].squeeze()
|
||||
else:
|
||||
# the action values are expected to be a numpy array representing the action mean
|
||||
action_values_mean = action_values.squeeze()
|
||||
|
||||
# step the noise schedule
|
||||
if self.phase == RunPhase.TRAIN:
|
||||
self.noise_percentage_schedule.step()
|
||||
# the second element of the list is assumed to be the standard deviation
|
||||
if isinstance(action_values, list) and len(action_values) > 1:
|
||||
action_values_std = action_values[1].squeeze()
|
||||
|
||||
# sample from truncated normal distribution
|
||||
normalized_low = (self.clip_low - action_values_mean) / action_values_std
|
||||
normalized_high = (self.clip_high - action_values_mean) / action_values_std
|
||||
distribution = truncnorm(normalized_low, normalized_high, loc=action_values_mean, scale=action_values_std)
|
||||
action = distribution.rvs(1)
|
||||
|
||||
return action
|
||||
|
||||
def get_control_param(self):
|
||||
return np.ones(self.action_space.shape)*self.noise_percentage_schedule.current_value
|
||||
Reference in New Issue
Block a user