1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00

pre-release 0.10.0

This commit is contained in:
Gal Novik
2018-08-13 17:11:34 +03:00
parent d44c329bb8
commit 19ca5c24b1
485 changed files with 33292 additions and 16770 deletions

140
rl_coach/plot_atari.py Normal file
View File

@@ -0,0 +1,140 @@
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import os
import matplotlib
import matplotlib.pyplot as plt
from rl_coach.dashboard_components.signals_file import SignalsFile
class FigureMaker(object):
def __init__(self, path, cols, smoothness, signal_to_plot, x_axis, color):
self.experiments_path = path
self.environments = self.list_environments()
self.cols = cols
self.rows = int((len(self.environments) + cols - 1) / cols)
self.smoothness = smoothness
self.signal_to_plot = signal_to_plot
self.x_axis = x_axis
self.color = color
params = {
'axes.labelsize': 8,
'font.size': 10,
'legend.fontsize': 14,
'xtick.labelsize': 8,
'ytick.labelsize': 8,
'text.usetex': False,
'figure.figsize': [16, 30]
}
matplotlib.rcParams.update(params)
def list_environments(self):
environments = sorted([e.name for e in os.scandir(self.experiments_path) if e.is_dir()])
filtered_environments = self.filter_environments(environments)
return filtered_environments
def filter_environments(self, environments):
filtered_environments = []
for idx, environment in enumerate(environments):
path = os.path.join(self.experiments_path, environment)
experiments = [e.name for e in os.scandir(path) if e.is_dir()]
# take only the last updated experiment directory
last_experiment_dir = max([os.path.join(path, root) for root in experiments], key=os.path.getctime)
# make sure there is a csv file inside it
for file_path in os.listdir(last_experiment_dir):
full_file_path = os.path.join(last_experiment_dir, file_path)
if os.path.isfile(full_file_path) and file_path.endswith('.csv'):
filtered_environments.append((environment, full_file_path))
return filtered_environments
def plot_figures(self, prev_subplot_map=None):
subplot_map = {}
for idx, (environment, full_file_path) in enumerate(self.environments):
environment = environment.split('level')[1].split('-')[1].split('Deterministic')[0][1:]
if prev_subplot_map:
# skip on environments which were not plotted before
if environment not in prev_subplot_map.keys():
continue
subplot_idx = prev_subplot_map[environment]
else:
subplot_idx = idx + 1
print(environment)
axis = plt.subplot(self.rows, self.cols, subplot_idx)
subplot_map[environment] = subplot_idx
signals = SignalsFile(full_file_path)
signals.change_averaging_window(self.smoothness, force=True, signals=[self.signal_to_plot])
steps = signals.bokeh_source.data[self.x_axis]
rewards = signals.bokeh_source.data[self.signal_to_plot]
yloc = plt.MaxNLocator(4)
axis.yaxis.set_major_locator(yloc)
axis.ticklabel_format(style='sci', axis='x', scilimits=(0, 0))
plt.title(environment, fontsize=10, y=1.08)
plt.plot(steps, rewards, self.color, linewidth=0.8)
plt.subplots_adjust(hspace=2.0, wspace=0.4)
return subplot_map
def save_pdf(self, name):
plt.savefig(name + ".pdf", bbox_inches='tight')
def show_figures(self):
plt.show()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-p', '--paths',
help="(string) Root directory of the experiments",
default=None,
type=str)
parser.add_argument('-c', '--cols',
help="(int) Number of plot columns",
default=6,
type=int)
parser.add_argument('-s', '--smoothness',
help="(int) Number of consequent episodes to average over",
default=100,
type=int)
parser.add_argument('-sig', '--signal',
help="(str) The name of the signal to plot",
default='Evaluation Reward',
type=str)
parser.add_argument('-x', '--x_axis',
help="(str) The meaning of the x axis",
default='Total steps',
type=str)
parser.add_argument('-pdf', '--pdf',
help="(str) A name of a pdf to save to",
default='atari',
type=str)
args = parser.parse_args()
paths = args.paths.split(",")
subplot_map = None
for idx, path in enumerate(paths):
maker = FigureMaker(path, cols=args.cols, smoothness=args.smoothness, signal_to_plot=args.signal, x_axis=args.x_axis, color='C{}'.format(idx))
subplot_map = maker.plot_figures(subplot_map)
plt.legend(paths)
maker.save_pdf(args.pdf)
maker.show_figures()