mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 19:50:17 +01:00
pre-release 0.10.0
This commit is contained in:
68
rl_coach/presets/BitFlip_DQN.py
Normal file
68
rl_coach/presets/BitFlip_DQN.py
Normal file
@@ -0,0 +1,68 @@
|
||||
from rl_coach.architectures.tensorflow_components.architecture import Dense
|
||||
from rl_coach.base_parameters import VisualizationParameters, EmbedderScheme, InputEmbedderParameters, \
|
||||
PresetValidationParameters
|
||||
from rl_coach.environments.gym_environment import Mujoco
|
||||
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
|
||||
from rl_coach.graph_managers.graph_manager import ScheduleParameters
|
||||
from rl_coach.memories.memory import MemoryGranularity
|
||||
from rl_coach.schedules import ConstantSchedule
|
||||
|
||||
from rl_coach.agents.dqn_agent import DQNAgentParameters
|
||||
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps
|
||||
|
||||
bit_length = 8
|
||||
|
||||
####################
|
||||
# Graph Scheduling #
|
||||
####################
|
||||
schedule_params = ScheduleParameters()
|
||||
schedule_params.improve_steps = TrainingSteps(400000)
|
||||
schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(16 * 50) # 50 cycles
|
||||
schedule_params.evaluation_steps = EnvironmentEpisodes(10)
|
||||
schedule_params.heatup_steps = EnvironmentSteps(0)
|
||||
|
||||
#########
|
||||
# Agent #
|
||||
#########
|
||||
agent_params = DQNAgentParameters()
|
||||
agent_params.network_wrappers['main'].learning_rate = 0.001
|
||||
agent_params.network_wrappers['main'].batch_size = 128
|
||||
agent_params.network_wrappers['main'].middleware_parameters.scheme = [Dense([256])]
|
||||
agent_params.network_wrappers['main'].input_embedders_parameters = {
|
||||
'state': InputEmbedderParameters(scheme=EmbedderScheme.Empty),
|
||||
'desired_goal': InputEmbedderParameters(scheme=EmbedderScheme.Empty)
|
||||
}
|
||||
agent_params.algorithm.discount = 0.98
|
||||
agent_params.algorithm.num_consecutive_playing_steps = EnvironmentEpisodes(16)
|
||||
agent_params.algorithm.num_consecutive_training_steps = 40
|
||||
agent_params.algorithm.num_steps_between_copying_online_weights_to_target = TrainingSteps(40)
|
||||
agent_params.algorithm.rate_for_copying_weights_to_target = 0.05
|
||||
agent_params.memory.max_size = (MemoryGranularity.Transitions, 10**6)
|
||||
agent_params.exploration.epsilon_schedule = ConstantSchedule(0.2)
|
||||
agent_params.exploration.evaluation_epsilon = 0
|
||||
|
||||
###############
|
||||
# Environment #
|
||||
###############
|
||||
env_params = Mujoco()
|
||||
env_params.level = 'rl_coach.environments.toy_problems.bit_flip:BitFlip'
|
||||
env_params.additional_simulator_parameters = {'bit_length': bit_length, 'mean_zero': True}
|
||||
# env_params.custom_reward_threshold = -bit_length + 1
|
||||
|
||||
vis_params = VisualizationParameters()
|
||||
|
||||
########
|
||||
# Test #
|
||||
########
|
||||
preset_validation_params = PresetValidationParameters()
|
||||
preset_validation_params.test = True
|
||||
preset_validation_params.min_reward_threshold = -7.9
|
||||
preset_validation_params.max_episodes_to_achieve_reward = 10000
|
||||
|
||||
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
|
||||
schedule_params=schedule_params, vis_params=vis_params,
|
||||
preset_validation_params=preset_validation_params)
|
||||
|
||||
|
||||
# self.algorithm.add_intrinsic_reward_for_reaching_the_goal = False
|
||||
|
||||
Reference in New Issue
Block a user