mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
pre-release 0.10.0
This commit is contained in:
130
rl_coach/presets/Fetch_DDPG_HER_baselines.py
Normal file
130
rl_coach/presets/Fetch_DDPG_HER_baselines.py
Normal file
@@ -0,0 +1,130 @@
|
||||
from rl_coach.agents.ddpg_agent import DDPGAgentParameters
|
||||
from rl_coach.architectures.tensorflow_components.architecture import Dense
|
||||
from rl_coach.architectures.tensorflow_components.middlewares.fc_middleware import FCMiddlewareParameters
|
||||
from rl_coach.base_parameters import VisualizationParameters, EmbedderScheme, InputEmbedderParameters, PresetValidationParameters
|
||||
from rl_coach.environments.environment import SelectedPhaseOnlyDumpMethod, MaxDumpMethod, SingleLevelSelection
|
||||
from rl_coach.environments.gym_environment import Mujoco, MujocoInputFilter, fetch_v1
|
||||
from rl_coach.filters.observation.observation_clipping_filter import ObservationClippingFilter
|
||||
from rl_coach.filters.observation.observation_normalization_filter import ObservationNormalizationFilter
|
||||
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
|
||||
from rl_coach.graph_managers.graph_manager import ScheduleParameters
|
||||
from rl_coach.memories.episodic.episodic_hindsight_experience_replay import EpisodicHindsightExperienceReplayParameters, \
|
||||
HindsightGoalSelectionMethod
|
||||
from rl_coach.memories.memory import MemoryGranularity
|
||||
from rl_coach.schedules import ConstantSchedule
|
||||
from rl_coach.spaces import GoalsSpace, ReachingGoal
|
||||
|
||||
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, RunPhase
|
||||
from rl_coach.exploration_policies.e_greedy import EGreedyParameters
|
||||
|
||||
cycles = 100 # 20 for reach. for others it's 100
|
||||
|
||||
####################
|
||||
# Graph Scheduling #
|
||||
####################
|
||||
schedule_params = ScheduleParameters()
|
||||
schedule_params.improve_steps = EnvironmentEpisodes(cycles * 200) # 200 epochs
|
||||
schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(cycles) # 50 cycles
|
||||
schedule_params.evaluation_steps = EnvironmentEpisodes(10)
|
||||
schedule_params.heatup_steps = EnvironmentSteps(0)
|
||||
|
||||
################
|
||||
# Agent Params #
|
||||
################
|
||||
agent_params = DDPGAgentParameters()
|
||||
|
||||
# actor
|
||||
actor_network = agent_params.network_wrappers['actor']
|
||||
actor_network.learning_rate = 0.001
|
||||
actor_network.batch_size = 256
|
||||
actor_network.optimizer_epsilon = 1e-08
|
||||
actor_network.adam_optimizer_beta1 = 0.9
|
||||
actor_network.adam_optimizer_beta2 = 0.999
|
||||
actor_network.input_embedders_parameters = {
|
||||
'observation': InputEmbedderParameters(scheme=EmbedderScheme.Empty),
|
||||
'desired_goal': InputEmbedderParameters(scheme=EmbedderScheme.Empty)
|
||||
}
|
||||
actor_network.middleware_parameters = FCMiddlewareParameters(scheme=[Dense([256]), Dense([256]), Dense([256])])
|
||||
actor_network.heads_parameters[0].batchnorm = False
|
||||
|
||||
# critic
|
||||
critic_network = agent_params.network_wrappers['critic']
|
||||
critic_network.learning_rate = 0.001
|
||||
critic_network.batch_size = 256
|
||||
critic_network.optimizer_epsilon = 1e-08
|
||||
critic_network.adam_optimizer_beta1 = 0.9
|
||||
critic_network.adam_optimizer_beta2 = 0.999
|
||||
critic_network.input_embedders_parameters = {
|
||||
'action': InputEmbedderParameters(scheme=EmbedderScheme.Empty),
|
||||
'desired_goal': InputEmbedderParameters(scheme=EmbedderScheme.Empty),
|
||||
'observation': InputEmbedderParameters(scheme=EmbedderScheme.Empty)
|
||||
}
|
||||
critic_network.middleware_parameters = FCMiddlewareParameters(scheme=[Dense([256]), Dense([256]), Dense([256])])
|
||||
|
||||
agent_params.algorithm.discount = 0.98
|
||||
agent_params.algorithm.num_consecutive_playing_steps = EnvironmentEpisodes(1)
|
||||
agent_params.algorithm.num_consecutive_training_steps = 40
|
||||
agent_params.algorithm.num_steps_between_copying_online_weights_to_target = TrainingSteps(40)
|
||||
agent_params.algorithm.rate_for_copying_weights_to_target = 0.05
|
||||
agent_params.algorithm.action_penalty = 1
|
||||
agent_params.algorithm.use_non_zero_discount_for_terminal_states = True
|
||||
agent_params.algorithm.clip_critic_targets = [-50, 0]
|
||||
|
||||
# HER parameters
|
||||
agent_params.memory = EpisodicHindsightExperienceReplayParameters()
|
||||
agent_params.memory.max_size = (MemoryGranularity.Transitions, 10**6)
|
||||
agent_params.memory.hindsight_goal_selection_method = HindsightGoalSelectionMethod.Future
|
||||
agent_params.memory.hindsight_transitions_per_regular_transition = 4
|
||||
agent_params.memory.goals_space = GoalsSpace(goal_name='achieved_goal',
|
||||
reward_type=ReachingGoal(distance_from_goal_threshold=0.05,
|
||||
goal_reaching_reward=0,
|
||||
default_reward=-1),
|
||||
distance_metric=GoalsSpace.DistanceMetric.Euclidean)
|
||||
agent_params.memory.shared_memory = True
|
||||
|
||||
# exploration parameters
|
||||
agent_params.exploration = EGreedyParameters()
|
||||
agent_params.exploration.epsilon_schedule = ConstantSchedule(0.3)
|
||||
agent_params.exploration.evaluation_epsilon = 0
|
||||
# they actually take the noise_percentage_schedule to be 0.2 * max_abs_range which is 0.1 * total_range
|
||||
agent_params.exploration.continuous_exploration_policy_parameters.noise_percentage_schedule = ConstantSchedule(0.1)
|
||||
agent_params.exploration.continuous_exploration_policy_parameters.evaluation_noise_percentage = 0
|
||||
|
||||
agent_params.input_filter = MujocoInputFilter()
|
||||
agent_params.input_filter.add_observation_filter('observation', 'clipping', ObservationClippingFilter(-200, 200))
|
||||
|
||||
agent_params.pre_network_filter = MujocoInputFilter()
|
||||
agent_params.pre_network_filter.add_observation_filter('observation', 'normalize_observation',
|
||||
ObservationNormalizationFilter(name='normalize_observation'))
|
||||
agent_params.pre_network_filter.add_observation_filter('achieved_goal', 'normalize_achieved_goal',
|
||||
ObservationNormalizationFilter(name='normalize_achieved_goal'))
|
||||
agent_params.pre_network_filter.add_observation_filter('desired_goal', 'normalize_desired_goal',
|
||||
ObservationNormalizationFilter(name='normalize_desired_goal'))
|
||||
|
||||
###############
|
||||
# Environment #
|
||||
###############
|
||||
env_params = Mujoco()
|
||||
env_params.level = SingleLevelSelection(fetch_v1)
|
||||
env_params.custom_reward_threshold = -49
|
||||
|
||||
vis_params = VisualizationParameters()
|
||||
vis_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod()]
|
||||
vis_params.dump_mp4 = False
|
||||
|
||||
|
||||
########
|
||||
# Test #
|
||||
########
|
||||
preset_validation_params = PresetValidationParameters()
|
||||
# preset_validation_params.test = True
|
||||
# preset_validation_params.min_reward_threshold = 200
|
||||
# preset_validation_params.max_episodes_to_achieve_reward = 600
|
||||
# preset_validation_params.reward_test_level = 'inverted_pendulum'
|
||||
preset_validation_params.trace_test_levels = ['slide', 'pick_and_place', 'push', 'reach']
|
||||
|
||||
|
||||
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
|
||||
schedule_params=schedule_params, vis_params=vis_params,
|
||||
preset_validation_params=preset_validation_params)
|
||||
|
||||
Reference in New Issue
Block a user