1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00

parameter noise exploration - using Noisy Nets

This commit is contained in:
Gal Leibovich
2018-08-27 18:19:01 +03:00
parent 658b437079
commit 1aa2ab0590
49 changed files with 536 additions and 433 deletions

View File

@@ -13,9 +13,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import math
import time
from typing import List
from typing import List, Union
import numpy as np
import tensorflow as tf
@@ -73,20 +73,87 @@ class Conv2d(object):
class Dense(object):
def __init__(self, params: List):
def __init__(self, params: Union[List, int]):
"""
:param params: list of [num_output_neurons]
"""
self.params = params
self.params = force_list(params)
def __call__(self, input_layer, name: str):
def __call__(self, input_layer, name: str, kernel_initializer=None, activation=None):
"""
returns a tensorflow dense layer
:param input_layer: previous layer
:param name: layer name
:return: dense layer
"""
return tf.layers.dense(input_layer, self.params[0], name=name)
return tf.layers.dense(input_layer, self.params[0], name=name, kernel_initializer=kernel_initializer,
activation=activation)
class NoisyNetDense(object):
"""
A factorized Noisy Net layer
https://arxiv.org/abs/1706.10295.
"""
def __init__(self, params: List):
"""
:param params: list of [num_output_neurons]
"""
self.params = force_list(params)
self.sigma0 = 0.5
def __call__(self, input_layer, name: str, kernel_initializer=None, activation=None):
"""
returns a NoisyNet dense layer
:param input_layer: previous layer
:param name: layer name
:param kernel_initializer: initializer for kernels. Default is to use Gaussian noise that preserves stddev.
:param activation: the activation function
:return: dense layer
"""
#TODO: noise sampling should be externally controlled. DQN is fine with sampling noise for every
# forward (either act or train, both for online and target networks).
# A3C, on the other hand, should sample noise only when policy changes (i.e. after every t_max steps)
num_inputs = input_layer.get_shape()[-1].value
num_outputs = self.params[0]
stddev = 1 / math.sqrt(num_inputs)
activation = activation if activation is not None else (lambda x: x)
if kernel_initializer is None:
kernel_mean_initializer = tf.random_uniform_initializer(-stddev, stddev)
kernel_stddev_initializer = tf.random_uniform_initializer(-stddev * self.sigma0, stddev * self.sigma0)
else:
kernel_mean_initializer = kernel_stddev_initializer = kernel_initializer
with tf.variable_scope(None, default_name=name):
weight_mean = tf.get_variable('weight_mean', shape=(num_inputs, num_outputs),
initializer=kernel_mean_initializer)
bias_mean = tf.get_variable('bias_mean', shape=(num_outputs,), initializer=tf.zeros_initializer())
weight_stddev = tf.get_variable('weight_stddev', shape=(num_inputs, num_outputs),
initializer=kernel_stddev_initializer)
bias_stddev = tf.get_variable('bias_stddev', shape=(num_outputs,),
initializer=kernel_stddev_initializer)
bias_noise = self.f(tf.random_normal((num_outputs,)))
weight_noise = self.factorized_noise(num_inputs, num_outputs)
bias = bias_mean + bias_stddev * bias_noise
weight = weight_mean + weight_stddev * weight_noise
return activation(tf.matmul(input_layer, weight) + bias)
def factorized_noise(self, inputs, outputs):
# TODO: use factorized noise only for compute intensive algos (e.g. DQN).
# lighter algos (e.g. DQN) should not use it
noise1 = self.f(tf.random_normal((inputs, 1)))
noise2 = self.f(tf.random_normal((1, outputs)))
return tf.matmul(noise1, noise2)
@staticmethod
def f(values):
return tf.sqrt(tf.abs(values)) * tf.sign(values)
def variable_summaries(var):