1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 11:40:18 +01:00

parameter noise exploration - using Noisy Nets

This commit is contained in:
Gal Leibovich
2018-08-27 18:19:01 +03:00
parent 658b437079
commit 1aa2ab0590
49 changed files with 536 additions and 433 deletions

View File

@@ -16,6 +16,8 @@
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.architecture import Dense
from rl_coach.architectures.tensorflow_components.heads.head import Head, HeadParameters
from rl_coach.base_parameters import AgentParameters
from rl_coach.core_types import QActionStateValue
@@ -23,14 +25,17 @@ from rl_coach.spaces import SpacesDefinition
class CategoricalQHeadParameters(HeadParameters):
def __init__(self, activation_function: str ='relu', name: str='categorical_q_head_params'):
super().__init__(parameterized_class=CategoricalQHead, activation_function=activation_function, name=name)
def __init__(self, activation_function: str ='relu', name: str='categorical_q_head_params', dense_layer=Dense):
super().__init__(parameterized_class=CategoricalQHead, activation_function=activation_function, name=name,
dense_layer=dense_layer)
class CategoricalQHead(Head):
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str ='relu'):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function)
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str ='relu',
dense_layer=Dense):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
dense_layer=dense_layer)
self.name = 'categorical_dqn_head'
self.num_actions = len(self.spaces.action.actions)
self.num_atoms = agent_parameters.algorithm.atoms
@@ -40,7 +45,7 @@ class CategoricalQHead(Head):
self.actions = tf.placeholder(tf.int32, [None], name="actions")
self.input = [self.actions]
values_distribution = tf.layers.dense(input_layer, self.num_actions * self.num_atoms, name='output')
values_distribution = self.dense_layer(self.num_actions * self.num_atoms)(input_layer, name='output')
values_distribution = tf.reshape(values_distribution, (tf.shape(values_distribution)[0], self.num_actions,
self.num_atoms))
# softmax on atoms dimension

View File

@@ -16,7 +16,7 @@
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.architecture import batchnorm_activation_dropout
from rl_coach.architectures.tensorflow_components.architecture import batchnorm_activation_dropout, Dense
from rl_coach.architectures.tensorflow_components.heads.head import Head, HeadParameters
from rl_coach.base_parameters import AgentParameters
from rl_coach.core_types import ActionProbabilities
@@ -24,16 +24,19 @@ from rl_coach.spaces import SpacesDefinition
class DDPGActorHeadParameters(HeadParameters):
def __init__(self, activation_function: str ='tanh', name: str='policy_head_params', batchnorm: bool=True):
super().__init__(parameterized_class=DDPGActor, activation_function=activation_function, name=name)
def __init__(self, activation_function: str ='tanh', name: str='policy_head_params', batchnorm: bool=True,
dense_layer=Dense):
super().__init__(parameterized_class=DDPGActor, activation_function=activation_function, name=name,
dense_layer=dense_layer)
self.batchnorm = batchnorm
class DDPGActor(Head):
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='tanh',
batchnorm: bool=True):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function)
batchnorm: bool=True, dense_layer=Dense):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
dense_layer=dense_layer)
self.name = 'ddpg_actor_head'
self.return_type = ActionProbabilities
@@ -50,7 +53,7 @@ class DDPGActor(Head):
def _build_module(self, input_layer):
# mean
pre_activation_policy_values_mean = tf.layers.dense(input_layer, self.num_actions, name='fc_mean')
pre_activation_policy_values_mean = self.dense_layer(self.num_actions)(input_layer, name='fc_mean')
policy_values_mean = batchnorm_activation_dropout(pre_activation_policy_values_mean, self.batchnorm,
self.activation_function,
False, 0, 0)[-1]

View File

@@ -15,6 +15,7 @@
#
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.architecture import Dense
from rl_coach.architectures.tensorflow_components.heads.head import HeadParameters
from rl_coach.architectures.tensorflow_components.heads.q_head import QHead
from rl_coach.base_parameters import AgentParameters
@@ -23,14 +24,17 @@ from rl_coach.spaces import SpacesDefinition
class DNDQHeadParameters(HeadParameters):
def __init__(self, activation_function: str ='relu', name: str='dnd_q_head_params'):
super().__init__(parameterized_class=DNDQHead, activation_function=activation_function, name=name)
def __init__(self, activation_function: str ='relu', name: str='dnd_q_head_params', dense_layer=Dense):
super().__init__(parameterized_class=DNDQHead, activation_function=activation_function, name=name,
dense_layer=dense_layer)
class DNDQHead(QHead):
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu'):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function)
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu',
dense_layer=Dense):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
dense_layer=dense_layer)
self.name = 'dnd_q_values_head'
self.DND_size = agent_parameters.algorithm.dnd_size
self.DND_key_error_threshold = agent_parameters.algorithm.DND_key_error_threshold

View File

@@ -16,6 +16,7 @@
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.architecture import Dense
from rl_coach.architectures.tensorflow_components.heads.head import HeadParameters
from rl_coach.architectures.tensorflow_components.heads.q_head import QHead
from rl_coach.base_parameters import AgentParameters
@@ -23,27 +24,29 @@ from rl_coach.spaces import SpacesDefinition
class DuelingQHeadParameters(HeadParameters):
def __init__(self, activation_function: str ='relu', name: str='dueling_q_head_params'):
super().__init__(parameterized_class=DuelingQHead, activation_function=activation_function, name=name)
def __init__(self, activation_function: str ='relu', name: str='dueling_q_head_params', dense_layer=Dense):
super().__init__(parameterized_class=DuelingQHead, activation_function=activation_function, name=name, dense_layer=dense_layer)
class DuelingQHead(QHead):
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu'):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function)
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu',
dense_layer=Dense):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
dense_layer=dense_layer)
self.name = 'dueling_q_values_head'
def _build_module(self, input_layer):
# state value tower - V
with tf.variable_scope("state_value"):
state_value = tf.layers.dense(input_layer, 512, activation=self.activation_function, name='fc1')
state_value = tf.layers.dense(state_value, 1, name='fc2')
state_value = self.dense_layer(512)(input_layer, activation=self.activation_function, name='fc1')
state_value = self.dense_layer(1)(state_value, name='fc2')
# state_value = tf.expand_dims(state_value, axis=-1)
# action advantage tower - A
with tf.variable_scope("action_advantage"):
action_advantage = tf.layers.dense(input_layer, 512, activation=self.activation_function, name='fc1')
action_advantage = tf.layers.dense(action_advantage, self.num_actions, name='fc2')
action_advantage = self.dense_layer(512)(input_layer, activation=self.activation_function, name='fc1')
action_advantage = self.dense_layer(self.num_actions)(action_advantage, name='fc2')
action_advantage = action_advantage - tf.reduce_mean(action_advantage)
# merge to state-action value function Q

View File

@@ -18,8 +18,8 @@ from typing import Type
import numpy as np
import tensorflow as tf
from tensorflow.python.ops.losses.losses_impl import Reduction
from rl_coach.base_parameters import AgentParameters, Parameters
from rl_coach.architectures.tensorflow_components.architecture import Dense
from rl_coach.base_parameters import AgentParameters, Parameters, NetworkComponentParameters
from rl_coach.spaces import SpacesDefinition
from rl_coach.utils import force_list
@@ -33,9 +33,10 @@ def normalized_columns_initializer(std=1.0):
return _initializer
class HeadParameters(Parameters):
def __init__(self, parameterized_class: Type['Head'], activation_function: str = 'relu', name: str= 'head'):
super().__init__()
class HeadParameters(NetworkComponentParameters):
def __init__(self, parameterized_class: Type['Head'], activation_function: str = 'relu', name: str= 'head',
dense_layer=Dense):
super().__init__(dense_layer=dense_layer)
self.activation_function = activation_function
self.name = name
self.parameterized_class_name = parameterized_class.__name__
@@ -48,7 +49,8 @@ class Head(object):
an assigned loss function. The heads are algorithm dependent.
"""
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
head_idx: int=0, loss_weight: float=1., is_local: bool=True, activation_function: str='relu'):
head_idx: int=0, loss_weight: float=1., is_local: bool=True, activation_function: str='relu',
dense_layer=Dense):
self.head_idx = head_idx
self.network_name = network_name
self.network_parameters = agent_parameters.network_wrappers[self.network_name]
@@ -66,6 +68,7 @@ class Head(object):
self.spaces = spaces
self.return_type = None
self.activation_function = activation_function
self.dense_layer = dense_layer
def __call__(self, input_layer):
"""

View File

@@ -16,6 +16,8 @@
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.architecture import Dense
from rl_coach.architectures.tensorflow_components.heads.head import Head, HeadParameters
from rl_coach.base_parameters import AgentParameters
from rl_coach.core_types import Measurements
@@ -23,15 +25,18 @@ from rl_coach.spaces import SpacesDefinition
class MeasurementsPredictionHeadParameters(HeadParameters):
def __init__(self, activation_function: str ='relu', name: str='measurements_prediction_head_params'):
def __init__(self, activation_function: str ='relu', name: str='measurements_prediction_head_params',
dense_layer=Dense):
super().__init__(parameterized_class=MeasurementsPredictionHead,
activation_function=activation_function, name=name)
activation_function=activation_function, name=name, dense_layer=dense_layer)
class MeasurementsPredictionHead(Head):
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu'):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function)
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu',
dense_layer=Dense):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
dense_layer=dense_layer)
self.name = 'future_measurements_head'
self.num_actions = len(self.spaces.action.actions)
self.num_measurements = self.spaces.state['measurements'].shape[0]
@@ -43,15 +48,15 @@ class MeasurementsPredictionHead(Head):
# This is almost exactly the same as Dueling Network but we predict the future measurements for each action
# actions expectation tower (expectation stream) - E
with tf.variable_scope("expectation_stream"):
expectation_stream = tf.layers.dense(input_layer, 256, activation=self.activation_function, name='fc1')
expectation_stream = tf.layers.dense(expectation_stream, self.multi_step_measurements_size, name='output')
expectation_stream = self.dense_layer(256)(input_layer, activation=self.activation_function, name='fc1')
expectation_stream = self.dense_layer(self.multi_step_measurements_size)(expectation_stream, name='output')
expectation_stream = tf.expand_dims(expectation_stream, axis=1)
# action fine differences tower (action stream) - A
with tf.variable_scope("action_stream"):
action_stream = tf.layers.dense(input_layer, 256, activation=self.activation_function, name='fc1')
action_stream = tf.layers.dense(action_stream, self.num_actions * self.multi_step_measurements_size,
name='output')
action_stream = self.dense_layer(256)(input_layer, activation=self.activation_function, name='fc1')
action_stream = self.dense_layer(self.num_actions * self.multi_step_measurements_size)(action_stream,
name='output')
action_stream = tf.reshape(action_stream,
(tf.shape(action_stream)[0], self.num_actions, self.multi_step_measurements_size))
action_stream = action_stream - tf.reduce_mean(action_stream, reduction_indices=1, keepdims=True)

View File

@@ -16,6 +16,7 @@
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.architecture import Dense
from rl_coach.architectures.tensorflow_components.heads.head import Head, HeadParameters
from rl_coach.base_parameters import AgentParameters
from rl_coach.core_types import QActionStateValue
@@ -24,14 +25,17 @@ from rl_coach.spaces import SpacesDefinition
class NAFHeadParameters(HeadParameters):
def __init__(self, activation_function: str ='tanh', name: str='naf_head_params'):
super().__init__(parameterized_class=NAFHead, activation_function=activation_function, name=name)
def __init__(self, activation_function: str ='tanh', name: str='naf_head_params', dense_layer=Dense):
super().__init__(parameterized_class=NAFHead, activation_function=activation_function, name=name,
dense_layer=dense_layer)
class NAFHead(Head):
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True,activation_function: str='relu'):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function)
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True,activation_function: str='relu',
dense_layer=Dense):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
dense_layer=dense_layer)
if not isinstance(self.spaces.action, BoxActionSpace):
raise ValueError("NAF works only for continuous action spaces (BoxActionSpace)")
@@ -50,15 +54,15 @@ class NAFHead(Head):
self.input = self.action
# V Head
self.V = tf.layers.dense(input_layer, 1, name='V')
self.V = self.dense_layer(1)(input_layer, name='V')
# mu Head
mu_unscaled = tf.layers.dense(input_layer, self.num_actions, activation=self.activation_function, name='mu_unscaled')
mu_unscaled = self.dense_layer(self.num_actions)(input_layer, activation=self.activation_function, name='mu_unscaled')
self.mu = tf.multiply(mu_unscaled, self.output_scale, name='mu')
# A Head
# l_vector is a vector that includes a lower-triangular matrix values
self.l_vector = tf.layers.dense(input_layer, (self.num_actions * (self.num_actions + 1)) / 2, name='l_vector')
self.l_vector = self.dense_layer((self.num_actions * (self.num_actions + 1)) / 2)(input_layer, name='l_vector')
# Convert l to a lower triangular matrix and exponentiate its diagonal

View File

@@ -17,6 +17,7 @@
import numpy as np
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.architecture import Dense
from rl_coach.architectures.tensorflow_components.heads.head import Head, normalized_columns_initializer, HeadParameters
from rl_coach.base_parameters import AgentParameters
from rl_coach.core_types import ActionProbabilities
@@ -27,14 +28,17 @@ from rl_coach.utils import eps
class PolicyHeadParameters(HeadParameters):
def __init__(self, activation_function: str ='tanh', name: str='policy_head_params'):
super().__init__(parameterized_class=PolicyHead, activation_function=activation_function, name=name)
def __init__(self, activation_function: str ='tanh', name: str='policy_head_params', dense_layer=Dense):
super().__init__(parameterized_class=PolicyHead, activation_function=activation_function, name=name,
dense_layer=dense_layer)
class PolicyHead(Head):
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='tanh'):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function)
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='tanh',
dense_layer=Dense):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
dense_layer=dense_layer)
self.name = 'policy_values_head'
self.return_type = ActionProbabilities
self.beta = None
@@ -90,7 +94,7 @@ class PolicyHead(Head):
num_actions = len(action_space.actions)
self.actions.append(tf.placeholder(tf.int32, [None], name="actions"))
policy_values = tf.layers.dense(input_layer, num_actions, name='fc')
policy_values = self.dense_layer(num_actions)(input_layer, name='fc')
self.policy_probs = tf.nn.softmax(policy_values, name="policy")
# define the distributions for the policy and the old policy
@@ -114,7 +118,7 @@ class PolicyHead(Head):
self.continuous_output_activation = None
# mean
pre_activation_policy_values_mean = tf.layers.dense(input_layer, num_actions, name='fc_mean')
pre_activation_policy_values_mean = self.dense_layer(num_actions)(input_layer, name='fc_mean')
policy_values_mean = self.continuous_output_activation(pre_activation_policy_values_mean)
self.policy_mean = tf.multiply(policy_values_mean, self.output_scale, name='output_mean')
@@ -123,8 +127,9 @@ class PolicyHead(Head):
# standard deviation
if isinstance(self.exploration_policy, ContinuousEntropyParameters):
# the stdev is an output of the network and uses a softplus activation as defined in A3C
policy_values_std = tf.layers.dense(input_layer, num_actions,
kernel_initializer=normalized_columns_initializer(0.01), name='fc_std')
policy_values_std = self.dense_layer(num_actions)(input_layer,
kernel_initializer=normalized_columns_initializer(0.01),
name='fc_std')
self.policy_std = tf.nn.softplus(policy_values_std, name='output_variance') + eps
self.output.append(self.policy_std)

View File

@@ -17,6 +17,7 @@
import numpy as np
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.architecture import Dense
from rl_coach.architectures.tensorflow_components.heads.head import Head, HeadParameters, normalized_columns_initializer
from rl_coach.base_parameters import AgentParameters
from rl_coach.core_types import ActionProbabilities
@@ -26,14 +27,17 @@ from rl_coach.utils import eps
class PPOHeadParameters(HeadParameters):
def __init__(self, activation_function: str ='tanh', name: str='ppo_head_params'):
super().__init__(parameterized_class=PPOHead, activation_function=activation_function, name=name)
def __init__(self, activation_function: str ='tanh', name: str='ppo_head_params', dense_layer=Dense):
super().__init__(parameterized_class=PPOHead, activation_function=activation_function, name=name,
dense_layer=dense_layer)
class PPOHead(Head):
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='tanh'):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function)
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='tanh',
dense_layer=Dense):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
dense_layer=dense_layer)
self.name = 'ppo_head'
self.return_type = ActionProbabilities
@@ -110,7 +114,7 @@ class PPOHead(Head):
# Policy Head
self.input = [self.actions, self.old_policy_mean]
policy_values = tf.layers.dense(input_layer, num_actions, name='policy_fc')
policy_values = self.dense_layer(num_actions)(input_layer, name='policy_fc')
self.policy_mean = tf.nn.softmax(policy_values, name="policy")
# define the distributions for the policy and the old policy
@@ -127,7 +131,7 @@ class PPOHead(Head):
self.old_policy_std = tf.placeholder(tf.float32, [None, num_actions], "old_policy_std")
self.input = [self.actions, self.old_policy_mean, self.old_policy_std]
self.policy_mean = tf.layers.dense(input_layer, num_actions, name='policy_mean',
self.policy_mean = self.dense_layer(num_actions)(input_layer, name='policy_mean',
kernel_initializer=normalized_columns_initializer(0.01))
if self.is_local:
self.policy_logstd = tf.Variable(np.zeros((1, num_actions)), dtype='float32',

View File

@@ -16,6 +16,8 @@
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.architecture import Dense
from rl_coach.architectures.tensorflow_components.heads.head import Head, normalized_columns_initializer, HeadParameters
from rl_coach.base_parameters import AgentParameters
from rl_coach.core_types import ActionProbabilities
@@ -23,14 +25,17 @@ from rl_coach.spaces import SpacesDefinition
class PPOVHeadParameters(HeadParameters):
def __init__(self, activation_function: str ='relu', name: str='ppo_v_head_params'):
super().__init__(parameterized_class=PPOVHead, activation_function=activation_function, name=name)
def __init__(self, activation_function: str ='relu', name: str='ppo_v_head_params', dense_layer=Dense):
super().__init__(parameterized_class=PPOVHead, activation_function=activation_function, name=name,
dense_layer=dense_layer)
class PPOVHead(Head):
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu'):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function)
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu',
dense_layer=Dense):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
dense_layer=dense_layer)
self.name = 'ppo_v_head'
self.clip_likelihood_ratio_using_epsilon = agent_parameters.algorithm.clip_likelihood_ratio_using_epsilon
self.return_type = ActionProbabilities
@@ -38,7 +43,7 @@ class PPOVHead(Head):
def _build_module(self, input_layer):
self.old_policy_value = tf.placeholder(tf.float32, [None], "old_policy_values")
self.input = [self.old_policy_value]
self.output = tf.layers.dense(input_layer, 1, name='output',
self.output = self.dense_layer(1)(input_layer, name='output',
kernel_initializer=normalized_columns_initializer(1.0))
self.target = self.total_return = tf.placeholder(tf.float32, [None], name="total_return")

View File

@@ -16,6 +16,8 @@
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.architecture import Dense
from rl_coach.architectures.tensorflow_components.heads.head import Head, HeadParameters
from rl_coach.base_parameters import AgentParameters
from rl_coach.core_types import QActionStateValue
@@ -23,14 +25,17 @@ from rl_coach.spaces import SpacesDefinition, BoxActionSpace, DiscreteActionSpac
class QHeadParameters(HeadParameters):
def __init__(self, activation_function: str ='relu', name: str='q_head_params'):
super().__init__(parameterized_class=QHead, activation_function=activation_function, name=name)
def __init__(self, activation_function: str ='relu', name: str='q_head_params', dense_layer=Dense):
super().__init__(parameterized_class=QHead, activation_function=activation_function, name=name,
dense_layer=dense_layer)
class QHead(Head):
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu'):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function)
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu',
dense_layer=Dense):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
dense_layer=dense_layer)
self.name = 'q_values_head'
if isinstance(self.spaces.action, BoxActionSpace):
self.num_actions = 1
@@ -44,7 +49,7 @@ class QHead(Head):
def _build_module(self, input_layer):
# Standard Q Network
self.output = tf.layers.dense(input_layer, self.num_actions, name='output')
self.output = self.dense_layer(self.num_actions)(input_layer, name='output')

View File

@@ -16,6 +16,8 @@
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.architecture import Dense
from rl_coach.architectures.tensorflow_components.heads.head import Head, HeadParameters
from rl_coach.base_parameters import AgentParameters
from rl_coach.core_types import QActionStateValue
@@ -23,15 +25,18 @@ from rl_coach.spaces import SpacesDefinition
class QuantileRegressionQHeadParameters(HeadParameters):
def __init__(self, activation_function: str ='relu', name: str='quantile_regression_q_head_params'):
def __init__(self, activation_function: str ='relu', name: str='quantile_regression_q_head_params',
dense_layer=Dense):
super().__init__(parameterized_class=QuantileRegressionQHead, activation_function=activation_function,
name=name)
name=name, dense_layer=dense_layer)
class QuantileRegressionQHead(Head):
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu'):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function)
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu',
dense_layer=Dense):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
dense_layer=dense_layer)
self.name = 'quantile_regression_dqn_head'
self.num_actions = len(self.spaces.action.actions)
self.num_atoms = agent_parameters.algorithm.atoms # we use atom / quantile interchangeably
@@ -44,7 +49,7 @@ class QuantileRegressionQHead(Head):
self.input = [self.actions, self.quantile_midpoints]
# the output of the head is the N unordered quantile locations {theta_1, ..., theta_N}
quantiles_locations = tf.layers.dense(input_layer, self.num_actions * self.num_atoms, name='output')
quantiles_locations = self.dense_layer(self.num_actions * self.num_atoms)(input_layer, name='output')
quantiles_locations = tf.reshape(quantiles_locations, (tf.shape(quantiles_locations)[0], self.num_actions, self.num_atoms))
self.output = quantiles_locations

View File

@@ -16,6 +16,8 @@
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.architecture import Dense
from rl_coach.architectures.tensorflow_components.heads.head import Head, normalized_columns_initializer, HeadParameters
from rl_coach.base_parameters import AgentParameters
from rl_coach.core_types import VStateValue
@@ -23,14 +25,17 @@ from rl_coach.spaces import SpacesDefinition
class VHeadParameters(HeadParameters):
def __init__(self, activation_function: str ='relu', name: str='v_head_params'):
super().__init__(parameterized_class=VHead, activation_function=activation_function, name=name)
def __init__(self, activation_function: str ='relu', name: str='v_head_params', dense_layer=Dense):
super().__init__(parameterized_class=VHead, activation_function=activation_function, name=name,
dense_layer=dense_layer)
class VHead(Head):
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu'):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function)
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu',
dense_layer=Dense):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
dense_layer=dense_layer)
self.name = 'v_values_head'
self.return_type = VStateValue
@@ -41,5 +46,5 @@ class VHead(Head):
def _build_module(self, input_layer):
# Standard V Network
self.output = tf.layers.dense(input_layer, 1, name='output',
kernel_initializer=normalized_columns_initializer(1.0))
self.output = self.dense_layer(1)(input_layer, name='output',
kernel_initializer=normalized_columns_initializer(1.0))