1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00

parameter noise exploration - using Noisy Nets

This commit is contained in:
Gal Leibovich
2018-08-27 18:19:01 +03:00
parent 658b437079
commit 1aa2ab0590
49 changed files with 536 additions and 433 deletions

View File

@@ -16,6 +16,7 @@
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.architecture import Dense
from rl_coach.architectures.tensorflow_components.heads.head import Head, HeadParameters
from rl_coach.base_parameters import AgentParameters
from rl_coach.core_types import QActionStateValue
@@ -24,14 +25,17 @@ from rl_coach.spaces import SpacesDefinition
class NAFHeadParameters(HeadParameters):
def __init__(self, activation_function: str ='tanh', name: str='naf_head_params'):
super().__init__(parameterized_class=NAFHead, activation_function=activation_function, name=name)
def __init__(self, activation_function: str ='tanh', name: str='naf_head_params', dense_layer=Dense):
super().__init__(parameterized_class=NAFHead, activation_function=activation_function, name=name,
dense_layer=dense_layer)
class NAFHead(Head):
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True,activation_function: str='relu'):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function)
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True,activation_function: str='relu',
dense_layer=Dense):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
dense_layer=dense_layer)
if not isinstance(self.spaces.action, BoxActionSpace):
raise ValueError("NAF works only for continuous action spaces (BoxActionSpace)")
@@ -50,15 +54,15 @@ class NAFHead(Head):
self.input = self.action
# V Head
self.V = tf.layers.dense(input_layer, 1, name='V')
self.V = self.dense_layer(1)(input_layer, name='V')
# mu Head
mu_unscaled = tf.layers.dense(input_layer, self.num_actions, activation=self.activation_function, name='mu_unscaled')
mu_unscaled = self.dense_layer(self.num_actions)(input_layer, activation=self.activation_function, name='mu_unscaled')
self.mu = tf.multiply(mu_unscaled, self.output_scale, name='mu')
# A Head
# l_vector is a vector that includes a lower-triangular matrix values
self.l_vector = tf.layers.dense(input_layer, (self.num_actions * (self.num_actions + 1)) / 2, name='l_vector')
self.l_vector = self.dense_layer((self.num_actions * (self.num_actions + 1)) / 2)(input_layer, name='l_vector')
# Convert l to a lower triangular matrix and exponentiate its diagonal