1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00

parameter noise exploration - using Noisy Nets

This commit is contained in:
Gal Leibovich
2018-08-27 18:19:01 +03:00
parent 658b437079
commit 1aa2ab0590
49 changed files with 536 additions and 433 deletions

View File

@@ -17,6 +17,7 @@
import numpy as np
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.architecture import Dense
from rl_coach.architectures.tensorflow_components.heads.head import Head, HeadParameters, normalized_columns_initializer
from rl_coach.base_parameters import AgentParameters
from rl_coach.core_types import ActionProbabilities
@@ -26,14 +27,17 @@ from rl_coach.utils import eps
class PPOHeadParameters(HeadParameters):
def __init__(self, activation_function: str ='tanh', name: str='ppo_head_params'):
super().__init__(parameterized_class=PPOHead, activation_function=activation_function, name=name)
def __init__(self, activation_function: str ='tanh', name: str='ppo_head_params', dense_layer=Dense):
super().__init__(parameterized_class=PPOHead, activation_function=activation_function, name=name,
dense_layer=dense_layer)
class PPOHead(Head):
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='tanh'):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function)
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='tanh',
dense_layer=Dense):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
dense_layer=dense_layer)
self.name = 'ppo_head'
self.return_type = ActionProbabilities
@@ -110,7 +114,7 @@ class PPOHead(Head):
# Policy Head
self.input = [self.actions, self.old_policy_mean]
policy_values = tf.layers.dense(input_layer, num_actions, name='policy_fc')
policy_values = self.dense_layer(num_actions)(input_layer, name='policy_fc')
self.policy_mean = tf.nn.softmax(policy_values, name="policy")
# define the distributions for the policy and the old policy
@@ -127,7 +131,7 @@ class PPOHead(Head):
self.old_policy_std = tf.placeholder(tf.float32, [None, num_actions], "old_policy_std")
self.input = [self.actions, self.old_policy_mean, self.old_policy_std]
self.policy_mean = tf.layers.dense(input_layer, num_actions, name='policy_mean',
self.policy_mean = self.dense_layer(num_actions)(input_layer, name='policy_mean',
kernel_initializer=normalized_columns_initializer(0.01))
if self.is_local:
self.policy_logstd = tf.Variable(np.zeros((1, num_actions)), dtype='float32',