1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 03:30:19 +01:00

Cleanup imports.

Till now, most of the modules were importing all of the module objects
(variables, classes, functions, other imports) into module namespace,
which potentially could (and was) cause of unintentional use of class or
methods, which was indirect imported.

With this patch, all the star imports were substituted with top-level
module, which provides desired class or function.

Besides, all imports where sorted (where possible) in a way pep8[1]
suggests - first are imports from standard library, than goes third
party imports (like numpy, tensorflow etc) and finally coach modules.
All of those sections are separated by one empty line.

[1] https://www.python.org/dev/peps/pep-0008/#imports
This commit is contained in:
Roman Dobosz
2018-04-12 19:46:32 +02:00
parent cafa152382
commit 1b095aeeca
75 changed files with 1169 additions and 1139 deletions

View File

@@ -13,23 +13,24 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
from scipy import signal
from agents.policy_optimization_agent import *
from logger import *
from utils import *
import scipy.signal
from agents import policy_optimization_agent as poa
import utils
import logger
# Actor Critic - https://arxiv.org/abs/1602.01783
class ActorCriticAgent(PolicyOptimizationAgent):
class ActorCriticAgent(poa.PolicyOptimizationAgent):
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0, create_target_network = False):
PolicyOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id, create_target_network)
poa.PolicyOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id, create_target_network)
self.last_gradient_update_step_idx = 0
self.action_advantages = Signal('Advantages')
self.state_values = Signal('Values')
self.unclipped_grads = Signal('Grads (unclipped)')
self.value_loss = Signal('Value Loss')
self.policy_loss = Signal('Policy Loss')
self.action_advantages = utils.Signal('Advantages')
self.state_values = utils.Signal('Values')
self.unclipped_grads = utils.Signal('Grads (unclipped)')
self.value_loss = utils.Signal('Value Loss')
self.policy_loss = utils.Signal('Policy Loss')
self.signals.append(self.action_advantages)
self.signals.append(self.state_values)
self.signals.append(self.unclipped_grads)
@@ -38,7 +39,7 @@ class ActorCriticAgent(PolicyOptimizationAgent):
# Discounting function used to calculate discounted returns.
def discount(self, x, gamma):
return scipy.signal.lfilter([1], [1, -gamma], x[::-1], axis=0)[::-1]
return signal.lfilter([1], [1, -gamma], x[::-1], axis=0)[::-1]
def get_general_advantage_estimation_values(self, rewards, values):
# values contain n+1 elements (t ... t+n+1), rewards contain n elements (t ... t + n)
@@ -72,20 +73,20 @@ class ActorCriticAgent(PolicyOptimizationAgent):
# estimate the advantage function
action_advantages = np.zeros((num_transitions, 1))
if self.policy_gradient_rescaler == PolicyGradientRescaler.A_VALUE:
if self.policy_gradient_rescaler == poa.PolicyGradientRescaler.A_VALUE:
if game_overs[-1]:
R = 0
else:
R = self.main_network.online_network.predict(last_sample(next_states))[0]
R = self.main_network.online_network.predict(utils.last_sample(next_states))[0]
for i in reversed(range(num_transitions)):
R = rewards[i] + self.tp.agent.discount * R
state_value_head_targets[i] = R
action_advantages[i] = R - current_state_values[i]
elif self.policy_gradient_rescaler == PolicyGradientRescaler.GAE:
elif self.policy_gradient_rescaler == poa.PolicyGradientRescaler.GAE:
# get bootstraps
bootstrapped_value = self.main_network.online_network.predict(last_sample(next_states))[0]
bootstrapped_value = self.main_network.online_network.predict(utils.last_sample(next_states))[0]
values = np.append(current_state_values, bootstrapped_value)
if game_overs[-1]:
values[-1] = 0
@@ -94,7 +95,7 @@ class ActorCriticAgent(PolicyOptimizationAgent):
gae_values, state_value_head_targets = self.get_general_advantage_estimation_values(rewards, values)
action_advantages = np.vstack(gae_values)
else:
screen.warning("WARNING: The requested policy gradient rescaler is not available")
logger.screen.warning("WARNING: The requested policy gradient rescaler is not available")
action_advantages = action_advantages.squeeze(axis=-1)
if not self.env.discrete_controls and len(actions.shape) < 2:
@@ -113,7 +114,7 @@ class ActorCriticAgent(PolicyOptimizationAgent):
return total_loss
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
def choose_action(self, curr_state, phase=utils.RunPhase.TRAIN):
# TODO: rename curr_state -> state
# convert to batch so we can run it through the network
@@ -126,7 +127,7 @@ class ActorCriticAgent(PolicyOptimizationAgent):
# DISCRETE
state_value, action_probabilities = self.main_network.online_network.predict(curr_state)
action_probabilities = action_probabilities.squeeze()
if phase == RunPhase.TRAIN:
if phase == utils.RunPhase.TRAIN:
action = self.exploration_policy.get_action(action_probabilities)
else:
action = np.argmax(action_probabilities)
@@ -137,7 +138,7 @@ class ActorCriticAgent(PolicyOptimizationAgent):
state_value, action_values_mean, action_values_std = self.main_network.online_network.predict(curr_state)
action_values_mean = action_values_mean.squeeze()
action_values_std = action_values_std.squeeze()
if phase == RunPhase.TRAIN:
if phase == utils.RunPhase.TRAIN:
action = np.squeeze(np.random.randn(1, self.action_space_size) * action_values_std + action_values_mean)
else:
action = action_values_mean