1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00

Cleanup imports.

Till now, most of the modules were importing all of the module objects
(variables, classes, functions, other imports) into module namespace,
which potentially could (and was) cause of unintentional use of class or
methods, which was indirect imported.

With this patch, all the star imports were substituted with top-level
module, which provides desired class or function.

Besides, all imports where sorted (where possible) in a way pep8[1]
suggests - first are imports from standard library, than goes third
party imports (like numpy, tensorflow etc) and finally coach modules.
All of those sections are separated by one empty line.

[1] https://www.python.org/dev/peps/pep-0008/#imports
This commit is contained in:
Roman Dobosz
2018-04-12 19:46:32 +02:00
parent cafa152382
commit 1b095aeeca
75 changed files with 1169 additions and 1139 deletions

View File

@@ -13,27 +13,34 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from agents.actor_critic_agent import *
import collections
import copy
from random import shuffle
import numpy as np
from agents import actor_critic_agent as aca
from agents import policy_optimization_agent as poa
import logger
import utils
# Clipped Proximal Policy Optimization - https://arxiv.org/abs/1707.06347
class ClippedPPOAgent(ActorCriticAgent):
class ClippedPPOAgent(aca.ActorCriticAgent):
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
ActorCriticAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id,
create_target_network=True)
aca.ActorCriticAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id,
create_target_network=True)
# signals definition
self.value_loss = Signal('Value Loss')
self.value_loss = utils.Signal('Value Loss')
self.signals.append(self.value_loss)
self.policy_loss = Signal('Policy Loss')
self.policy_loss = utils.Signal('Policy Loss')
self.signals.append(self.policy_loss)
self.total_kl_divergence_during_training_process = 0.0
self.unclipped_grads = Signal('Grads (unclipped)')
self.unclipped_grads = utils.Signal('Grads (unclipped)')
self.signals.append(self.unclipped_grads)
self.value_targets = Signal('Value Targets')
self.value_targets = utils.Signal('Value Targets')
self.signals.append(self.value_targets)
self.kl_divergence = Signal('KL Divergence')
self.kl_divergence = utils.Signal('KL Divergence')
self.signals.append(self.kl_divergence)
def fill_advantages(self, batch):
@@ -46,9 +53,9 @@ class ClippedPPOAgent(ActorCriticAgent):
# calculate advantages
advantages = []
value_targets = []
if self.policy_gradient_rescaler == PolicyGradientRescaler.A_VALUE:
if self.policy_gradient_rescaler == poa.PolicyGradientRescaler.A_VALUE:
advantages = total_return - current_state_values
elif self.policy_gradient_rescaler == PolicyGradientRescaler.GAE:
elif self.policy_gradient_rescaler == poa.PolicyGradientRescaler.GAE:
# get bootstraps
episode_start_idx = 0
advantages = np.array([])
@@ -66,7 +73,7 @@ class ClippedPPOAgent(ActorCriticAgent):
advantages = np.append(advantages, rollout_advantages)
value_targets = np.append(value_targets, gae_based_value_targets)
else:
screen.warning("WARNING: The requested policy gradient rescaler is not available")
logger.screen.warning("WARNING: The requested policy gradient rescaler is not available")
# standardize
advantages = (advantages - np.mean(advantages)) / np.std(advantages)
@@ -144,8 +151,8 @@ class ClippedPPOAgent(ActorCriticAgent):
curr_learning_rate = self.tp.learning_rate
# log training parameters
screen.log_dict(
OrderedDict([
logger.screen.log_dict(
collections.OrderedDict([
("Surrogate loss", loss['policy_losses'][0]),
("KL divergence", loss['fetch_result'][0]),
("Entropy", loss['fetch_result'][1]),
@@ -184,13 +191,13 @@ class ClippedPPOAgent(ActorCriticAgent):
self.update_log() # should be done in order to update the data that has been accumulated * while not playing *
return np.append(losses[0], losses[1])
def choose_action(self, current_state, phase=RunPhase.TRAIN):
def choose_action(self, current_state, phase=utils.RunPhase.TRAIN):
if self.env.discrete_controls:
# DISCRETE
_, action_values = self.main_network.online_network.predict(self.tf_input_state(current_state))
action_values = action_values.squeeze()
if phase == RunPhase.TRAIN:
if phase == utils.RunPhase.TRAIN:
action = self.exploration_policy.get_action(action_values)
else:
action = np.argmax(action_values)
@@ -201,7 +208,7 @@ class ClippedPPOAgent(ActorCriticAgent):
_, action_values_mean, action_values_std = self.main_network.online_network.predict(self.tf_input_state(current_state))
action_values_mean = action_values_mean.squeeze()
action_values_std = action_values_std.squeeze()
if phase == RunPhase.TRAIN:
if phase == utils.RunPhase.TRAIN:
action = np.squeeze(np.random.randn(1, self.action_space_size) * action_values_std + action_values_mean)
# if self.current_episode % 5 == 0 and self.current_episode_steps_counter < 5:
# print action