mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
Cleanup imports.
Till now, most of the modules were importing all of the module objects (variables, classes, functions, other imports) into module namespace, which potentially could (and was) cause of unintentional use of class or methods, which was indirect imported. With this patch, all the star imports were substituted with top-level module, which provides desired class or function. Besides, all imports where sorted (where possible) in a way pep8[1] suggests - first are imports from standard library, than goes third party imports (like numpy, tensorflow etc) and finally coach modules. All of those sections are separated by one empty line. [1] https://www.python.org/dev/peps/pep-0008/#imports
This commit is contained in:
@@ -13,23 +13,27 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import collections
|
||||
|
||||
from agents.agent import *
|
||||
from agents import agent
|
||||
from architectures import network_wrapper as nw
|
||||
import utils
|
||||
import logging
|
||||
|
||||
|
||||
# Imitation Agent
|
||||
class ImitationAgent(Agent):
|
||||
class ImitationAgent(agent.Agent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
Agent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
self.main_network = NetworkWrapper(tuning_parameters, False, self.has_global, 'main',
|
||||
self.replicated_device, self.worker_device)
|
||||
agent.Agent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
self.main_network = nw.NetworkWrapper(tuning_parameters, False, self.has_global, 'main',
|
||||
self.replicated_device, self.worker_device)
|
||||
self.networks.append(self.main_network)
|
||||
self.imitation = True
|
||||
|
||||
def extract_action_values(self, prediction):
|
||||
return prediction.squeeze()
|
||||
|
||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||
def choose_action(self, curr_state, phase=utils.RunPhase.TRAIN):
|
||||
# convert to batch so we can run it through the network
|
||||
prediction = self.main_network.online_network.predict(self.tf_input_state(curr_state))
|
||||
|
||||
@@ -49,10 +53,10 @@ class ImitationAgent(Agent):
|
||||
|
||||
def log_to_screen(self, phase):
|
||||
# log to screen
|
||||
if phase == RunPhase.TRAIN:
|
||||
if phase == utils.RunPhase.TRAIN:
|
||||
# for the training phase - we log during the episode to visualize the progress in training
|
||||
screen.log_dict(
|
||||
OrderedDict([
|
||||
logging.screen.log_dict(
|
||||
collections.OrderedDict([
|
||||
("Worker", self.task_id),
|
||||
("Episode", self.current_episode),
|
||||
("Loss", self.loss.values[-1]),
|
||||
@@ -62,4 +66,4 @@ class ImitationAgent(Agent):
|
||||
)
|
||||
else:
|
||||
# for the evaluation phase - logging as in regular RL
|
||||
Agent.log_to_screen(self, phase)
|
||||
agent.Agent.log_to_screen(self, phase)
|
||||
|
||||
Reference in New Issue
Block a user