mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
Cleanup imports.
Till now, most of the modules were importing all of the module objects (variables, classes, functions, other imports) into module namespace, which potentially could (and was) cause of unintentional use of class or methods, which was indirect imported. With this patch, all the star imports were substituted with top-level module, which provides desired class or function. Besides, all imports where sorted (where possible) in a way pep8[1] suggests - first are imports from standard library, than goes third party imports (like numpy, tensorflow etc) and finally coach modules. All of those sections are separated by one empty line. [1] https://www.python.org/dev/peps/pep-0008/#imports
This commit is contained in:
@@ -13,25 +13,18 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from agents.policy_optimization_agent import *
|
||||
import numpy as np
|
||||
from logger import *
|
||||
import tensorflow as tf
|
||||
try:
|
||||
import matplotlib.pyplot as plt
|
||||
except:
|
||||
from logger import failed_imports
|
||||
failed_imports.append("matplotlib")
|
||||
|
||||
from utils import *
|
||||
from agents import policy_optimization_agent as poa
|
||||
import logger
|
||||
import utils
|
||||
|
||||
|
||||
class PolicyGradientsAgent(PolicyOptimizationAgent):
|
||||
class PolicyGradientsAgent(poa.PolicyOptimizationAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
PolicyOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
self.returns_mean = Signal('Returns Mean')
|
||||
self.returns_variance = Signal('Returns Variance')
|
||||
poa.PolicyOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
self.returns_mean = utils.Signal('Returns Mean')
|
||||
self.returns_variance = utils.Signal('Returns Variance')
|
||||
self.signals.append(self.returns_mean)
|
||||
self.signals.append(self.returns_variance)
|
||||
self.last_gradient_update_step_idx = 0
|
||||
@@ -41,21 +34,21 @@ class PolicyGradientsAgent(PolicyOptimizationAgent):
|
||||
current_states, next_states, actions, rewards, game_overs, total_returns = self.extract_batch(batch)
|
||||
|
||||
for i in reversed(range(len(total_returns))):
|
||||
if self.policy_gradient_rescaler == PolicyGradientRescaler.TOTAL_RETURN:
|
||||
if self.policy_gradient_rescaler == poa.PolicyGradientRescaler.TOTAL_RETURN:
|
||||
total_returns[i] = total_returns[0]
|
||||
elif self.policy_gradient_rescaler == PolicyGradientRescaler.FUTURE_RETURN:
|
||||
elif self.policy_gradient_rescaler == poa.PolicyGradientRescaler.FUTURE_RETURN:
|
||||
# just take the total return as it is
|
||||
pass
|
||||
elif self.policy_gradient_rescaler == PolicyGradientRescaler.FUTURE_RETURN_NORMALIZED_BY_EPISODE:
|
||||
elif self.policy_gradient_rescaler == poa.PolicyGradientRescaler.FUTURE_RETURN_NORMALIZED_BY_EPISODE:
|
||||
# we can get a single transition episode while playing Doom Basic, causing the std to be 0
|
||||
if self.std_discounted_return != 0:
|
||||
total_returns[i] = (total_returns[i] - self.mean_discounted_return) / self.std_discounted_return
|
||||
else:
|
||||
total_returns[i] = 0
|
||||
elif self.policy_gradient_rescaler == PolicyGradientRescaler.FUTURE_RETURN_NORMALIZED_BY_TIMESTEP:
|
||||
elif self.policy_gradient_rescaler == poa.PolicyGradientRescaler.FUTURE_RETURN_NORMALIZED_BY_TIMESTEP:
|
||||
total_returns[i] -= self.mean_return_over_multiple_episodes[i]
|
||||
else:
|
||||
screen.warning("WARNING: The requested policy gradient rescaler is not available")
|
||||
logger.screen.warning("WARNING: The requested policy gradient rescaler is not available")
|
||||
|
||||
targets = total_returns
|
||||
if not self.env.discrete_controls and len(actions.shape) < 2:
|
||||
@@ -69,12 +62,12 @@ class PolicyGradientsAgent(PolicyOptimizationAgent):
|
||||
|
||||
return total_loss
|
||||
|
||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||
def choose_action(self, curr_state, phase=utils.RunPhase.TRAIN):
|
||||
# convert to batch so we can run it through the network
|
||||
if self.env.discrete_controls:
|
||||
# DISCRETE
|
||||
action_values = self.main_network.online_network.predict(self.tf_input_state(curr_state)).squeeze()
|
||||
if phase == RunPhase.TRAIN:
|
||||
if phase == utils.RunPhase.TRAIN:
|
||||
action = self.exploration_policy.get_action(action_values)
|
||||
else:
|
||||
action = np.argmax(action_values)
|
||||
@@ -84,7 +77,7 @@ class PolicyGradientsAgent(PolicyOptimizationAgent):
|
||||
# CONTINUOUS
|
||||
result = self.main_network.online_network.predict(self.tf_input_state(curr_state))
|
||||
action_values = result[0].squeeze()
|
||||
if phase == RunPhase.TRAIN:
|
||||
if phase == utils.RunPhase.TRAIN:
|
||||
action = self.exploration_policy.get_action(action_values)
|
||||
else:
|
||||
action = action_values
|
||||
|
||||
Reference in New Issue
Block a user