1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00

Cleanup imports.

Till now, most of the modules were importing all of the module objects
(variables, classes, functions, other imports) into module namespace,
which potentially could (and was) cause of unintentional use of class or
methods, which was indirect imported.

With this patch, all the star imports were substituted with top-level
module, which provides desired class or function.

Besides, all imports where sorted (where possible) in a way pep8[1]
suggests - first are imports from standard library, than goes third
party imports (like numpy, tensorflow etc) and finally coach modules.
All of those sections are separated by one empty line.

[1] https://www.python.org/dev/peps/pep-0008/#imports
This commit is contained in:
Roman Dobosz
2018-04-12 19:46:32 +02:00
parent cafa152382
commit 1b095aeeca
75 changed files with 1169 additions and 1139 deletions

View File

@@ -13,36 +13,44 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import collections
import copy
from agents.actor_critic_agent import *
from random import shuffle
import numpy as np
from agents import actor_critic_agent as aca
from agents import policy_optimization_agent as poa
from architectures import network_wrapper as nw
import configurations
import logger
import utils
# Proximal Policy Optimization - https://arxiv.org/pdf/1707.06347.pdf
class PPOAgent(ActorCriticAgent):
class PPOAgent(aca.ActorCriticAgent):
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
ActorCriticAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id,
create_target_network=True)
aca.ActorCriticAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id,
create_target_network=True)
self.critic_network = self.main_network
# define the policy network
tuning_parameters.agent.input_types = {'observation': InputTypes.Observation}
tuning_parameters.agent.output_types = [OutputTypes.PPO]
tuning_parameters.agent.input_types = {'observation': configurations.InputTypes.Observation}
tuning_parameters.agent.output_types = [configurations.OutputTypes.PPO]
tuning_parameters.agent.optimizer_type = 'Adam'
tuning_parameters.agent.l2_regularization = 0
self.policy_network = NetworkWrapper(tuning_parameters, True, self.has_global, 'policy',
self.replicated_device, self.worker_device)
self.policy_network = nw.NetworkWrapper(tuning_parameters, True, self.has_global, 'policy',
self.replicated_device, self.worker_device)
self.networks.append(self.policy_network)
# signals definition
self.value_loss = Signal('Value Loss')
self.value_loss = utils.Signal('Value Loss')
self.signals.append(self.value_loss)
self.policy_loss = Signal('Policy Loss')
self.policy_loss = utils.Signal('Policy Loss')
self.signals.append(self.policy_loss)
self.kl_divergence = Signal('KL Divergence')
self.kl_divergence = utils.Signal('KL Divergence')
self.signals.append(self.kl_divergence)
self.total_kl_divergence_during_training_process = 0.0
self.unclipped_grads = Signal('Grads (unclipped)')
self.unclipped_grads = utils.Signal('Grads (unclipped)')
self.signals.append(self.unclipped_grads)
self.reset_game(do_not_reset_env=True)
@@ -57,9 +65,9 @@ class PPOAgent(ActorCriticAgent):
# calculate advantages
advantages = []
if self.policy_gradient_rescaler == PolicyGradientRescaler.A_VALUE:
if self.policy_gradient_rescaler == poa.PolicyGradientRescaler.A_VALUE:
advantages = total_return - current_state_values
elif self.policy_gradient_rescaler == PolicyGradientRescaler.GAE:
elif self.policy_gradient_rescaler == poa.PolicyGradientRescaler.GAE:
# get bootstraps
episode_start_idx = 0
advantages = np.array([])
@@ -76,7 +84,7 @@ class PPOAgent(ActorCriticAgent):
episode_start_idx = idx + 1
advantages = np.append(advantages, rollout_advantages)
else:
screen.warning("WARNING: The requested policy gradient rescaler is not available")
logger.screen.warning("WARNING: The requested policy gradient rescaler is not available")
# standardize
advantages = (advantages - np.mean(advantages)) / np.std(advantages)
@@ -107,7 +115,7 @@ class PPOAgent(ActorCriticAgent):
for k, v in current_states.items()
}
total_return_batch = total_return[i * batch_size:(i + 1) * batch_size]
old_policy_values = force_list(self.critic_network.target_network.predict(
old_policy_values = utils.force_list(self.critic_network.target_network.predict(
current_states_batch).squeeze())
if self.critic_network.online_network.optimizer_type != 'LBFGS':
targets = total_return_batch
@@ -155,7 +163,7 @@ class PPOAgent(ActorCriticAgent):
actions = np.expand_dims(actions, -1)
# get old policy probabilities and distribution
old_policy = force_list(self.policy_network.target_network.predict(current_states))
old_policy = utils.force_list(self.policy_network.target_network.predict(current_states))
# calculate gradients and apply on both the local policy network and on the global policy network
fetches = [self.policy_network.online_network.output_heads[0].kl_divergence,
@@ -196,8 +204,8 @@ class PPOAgent(ActorCriticAgent):
curr_learning_rate = self.tp.learning_rate
# log training parameters
screen.log_dict(
OrderedDict([
logger.screen.log_dict(
collections.OrderedDict([
("Surrogate loss", loss['policy_losses'][0]),
("KL divergence", loss['fetch_result'][0]),
("Entropy", loss['fetch_result'][1]),
@@ -215,7 +223,7 @@ class PPOAgent(ActorCriticAgent):
def update_kl_coefficient(self):
# John Schulman takes the mean kl divergence only over the last epoch which is strange but we will follow
# his implementation for now because we know it works well
screen.log_title("KL = {}".format(self.total_kl_divergence_during_training_process))
logger.screen.log_title("KL = {}".format(self.total_kl_divergence_during_training_process))
# update kl coefficient
kl_target = self.tp.agent.target_kl_divergence
@@ -236,7 +244,7 @@ class PPOAgent(ActorCriticAgent):
new_kl_coefficient,
self.policy_network.online_network.output_heads[0].kl_coefficient_ph)
screen.log_title("KL penalty coefficient change = {} -> {}".format(kl_coefficient, new_kl_coefficient))
logger.screen.log_title("KL penalty coefficient change = {} -> {}".format(kl_coefficient, new_kl_coefficient))
def post_training_commands(self):
if self.tp.agent.use_kl_regularization:
@@ -264,12 +272,12 @@ class PPOAgent(ActorCriticAgent):
self.update_log() # should be done in order to update the data that has been accumulated * while not playing *
return np.append(value_loss, policy_loss)
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
def choose_action(self, curr_state, phase=utils.RunPhase.TRAIN):
if self.env.discrete_controls:
# DISCRETE
action_values = self.policy_network.online_network.predict(self.tf_input_state(curr_state)).squeeze()
if phase == RunPhase.TRAIN:
if phase == utils.RunPhase.TRAIN:
action = self.exploration_policy.get_action(action_values)
else:
action = np.argmax(action_values)
@@ -280,7 +288,7 @@ class PPOAgent(ActorCriticAgent):
action_values_mean, action_values_std = self.policy_network.online_network.predict(self.tf_input_state(curr_state))
action_values_mean = action_values_mean.squeeze()
action_values_std = action_values_std.squeeze()
if phase == RunPhase.TRAIN:
if phase == utils.RunPhase.TRAIN:
action = np.squeeze(np.random.randn(1, self.action_space_size) * action_values_std + action_values_mean)
else:
action = action_values_mean