mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
Cleanup imports.
Till now, most of the modules were importing all of the module objects (variables, classes, functions, other imports) into module namespace, which potentially could (and was) cause of unintentional use of class or methods, which was indirect imported. With this patch, all the star imports were substituted with top-level module, which provides desired class or function. Besides, all imports where sorted (where possible) in a way pep8[1] suggests - first are imports from standard library, than goes third party imports (like numpy, tensorflow etc) and finally coach modules. All of those sections are separated by one empty line. [1] https://www.python.org/dev/peps/pep-0008/#imports
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,19 +13,16 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import argparse
|
||||
import tensorflow as tf
|
||||
from architectures import *
|
||||
from environments import *
|
||||
from agents import *
|
||||
from utils import *
|
||||
import os
|
||||
import time
|
||||
import copy
|
||||
from logger import *
|
||||
from configurations import *
|
||||
from presets import *
|
||||
import shutil
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
import agents
|
||||
import environments
|
||||
import logger
|
||||
import presets
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
@@ -66,15 +63,15 @@ if __name__ == "__main__":
|
||||
|
||||
elif args.job_name == "worker":
|
||||
# get tuning parameters
|
||||
tuning_parameters = json_to_preset(args.load_json_path)
|
||||
tuning_parameters = presets.json_to_preset(args.load_json_path)
|
||||
|
||||
# dump documentation
|
||||
if not os.path.exists(tuning_parameters.experiment_path):
|
||||
os.makedirs(tuning_parameters.experiment_path)
|
||||
if tuning_parameters.evaluate_only:
|
||||
logger.set_dump_dir(tuning_parameters.experiment_path, tuning_parameters.task_id, filename='evaluator')
|
||||
logger.logger.set_dump_dir(tuning_parameters.experiment_path, tuning_parameters.task_id, filename='evaluator')
|
||||
else:
|
||||
logger.set_dump_dir(tuning_parameters.experiment_path, tuning_parameters.task_id)
|
||||
logger.logger.set_dump_dir(tuning_parameters.experiment_path, tuning_parameters.task_id)
|
||||
|
||||
# multi-threading parameters
|
||||
tuning_parameters.start_time = start_time
|
||||
@@ -98,8 +95,8 @@ if __name__ == "__main__":
|
||||
cluster=cluster)
|
||||
|
||||
# create the agent and the environment
|
||||
env_instance = create_environment(tuning_parameters)
|
||||
exec('agent = ' + tuning_parameters.agent.type + '(env_instance, tuning_parameters, replicated_device=device, '
|
||||
env_instance = environments.create_environment(tuning_parameters)
|
||||
exec('agent = agents.' + tuning_parameters.agent.type + '(env_instance, tuning_parameters, replicated_device=device, '
|
||||
'thread_id=tuning_parameters.task_id)')
|
||||
|
||||
# building the scaffold
|
||||
@@ -169,6 +166,6 @@ if __name__ == "__main__":
|
||||
else:
|
||||
agent.improve()
|
||||
else:
|
||||
screen.error("Invalid mode requested for parallel_actor.")
|
||||
logger.screen.error("Invalid mode requested for parallel_actor.")
|
||||
exit(1)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user