mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
coach v0.8.0
This commit is contained in:
104
agents/ddpg_agent.py
Normal file
104
agents/ddpg_agent.py
Normal file
@@ -0,0 +1,104 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from agents.actor_critic_agent import *
|
||||
from configurations import *
|
||||
|
||||
|
||||
# Deep Deterministic Policy Gradients Network - https://arxiv.org/pdf/1509.02971.pdf
|
||||
class DDPGAgent(ActorCriticAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
ActorCriticAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id,
|
||||
create_target_network=True)
|
||||
# define critic network
|
||||
self.critic_network = self.main_network
|
||||
# self.networks.append(self.critic_network)
|
||||
|
||||
# define actor network
|
||||
tuning_parameters.agent.input_types = [InputTypes.Observation]
|
||||
tuning_parameters.agent.output_types = [OutputTypes.Pi]
|
||||
self.actor_network = NetworkWrapper(tuning_parameters, True, self.has_global, 'actor',
|
||||
self.replicated_device, self.worker_device)
|
||||
self.networks.append(self.actor_network)
|
||||
|
||||
self.q_values = Signal("Q")
|
||||
self.signals.append(self.q_values)
|
||||
|
||||
def learn_from_batch(self, batch):
|
||||
current_states, next_states, actions, rewards, game_overs, _ = self.extract_batch(batch)
|
||||
|
||||
# TD error = r + discount*max(q_st_plus_1) - q_st
|
||||
next_actions = self.actor_network.target_network.predict([next_states])
|
||||
q_st_plus_1 = self.critic_network.target_network.predict([next_states, next_actions])
|
||||
TD_targets = np.expand_dims(rewards, -1) + \
|
||||
(1.0 - np.expand_dims(game_overs, -1)) * self.tp.agent.discount * q_st_plus_1
|
||||
|
||||
# get the gradients of the critic output with respect to the action
|
||||
actions_mean = self.actor_network.online_network.predict(current_states)
|
||||
critic_online_network = self.critic_network.online_network
|
||||
action_gradients = self.critic_network.sess.run(critic_online_network.gradients_wrt_inputs[1],
|
||||
feed_dict={
|
||||
critic_online_network.inputs[0]: current_states,
|
||||
critic_online_network.inputs[1]: actions_mean,
|
||||
})[0]
|
||||
|
||||
# train the critic
|
||||
if len(actions.shape) == 1:
|
||||
actions = np.expand_dims(actions, -1)
|
||||
result = self.critic_network.train_and_sync_networks([current_states, actions], TD_targets)
|
||||
total_loss = result[0]
|
||||
|
||||
# apply the gradients from the critic to the actor
|
||||
actor_online_network = self.actor_network.online_network
|
||||
gradients = self.actor_network.sess.run(actor_online_network.weighted_gradients,
|
||||
feed_dict={
|
||||
actor_online_network.gradients_weights_ph: -action_gradients,
|
||||
actor_online_network.inputs[0]: current_states
|
||||
})
|
||||
if self.actor_network.has_global:
|
||||
self.actor_network.global_network.apply_gradients(gradients)
|
||||
self.actor_network.update_online_network()
|
||||
else:
|
||||
self.actor_network.online_network.apply_gradients(gradients)
|
||||
|
||||
return total_loss
|
||||
|
||||
def train(self):
|
||||
return Agent.train(self)
|
||||
|
||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||
assert not self.env.discrete_controls, 'DDPG works only for continuous control problems'
|
||||
# convert to batch so we can run it through the network
|
||||
observation = np.expand_dims(np.array(curr_state['observation']), 0)
|
||||
result = self.actor_network.online_network.predict(observation)
|
||||
action_values = result[0].squeeze()
|
||||
|
||||
if phase == RunPhase.TRAIN:
|
||||
action = self.exploration_policy.get_action(action_values)
|
||||
else:
|
||||
action = action_values
|
||||
|
||||
action = np.clip(action, self.env.action_space_low, self.env.action_space_high)
|
||||
|
||||
# get q value
|
||||
action_batch = np.expand_dims(action, 0)
|
||||
if type(action) != np.ndarray:
|
||||
action_batch = np.array([[action]])
|
||||
q_value = self.critic_network.online_network.predict([observation, action_batch])[0]
|
||||
self.q_values.add_sample(q_value)
|
||||
action_info = {"action_value": q_value}
|
||||
|
||||
return action, action_info
|
||||
Reference in New Issue
Block a user