mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 03:30:19 +01:00
coach v0.8.0
This commit is contained in:
104
agents/nec_agent.py
Normal file
104
agents/nec_agent.py
Normal file
@@ -0,0 +1,104 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from agents.value_optimization_agent import *
|
||||
|
||||
|
||||
# Neural Episodic Control - https://arxiv.org/pdf/1703.01988.pdf
|
||||
class NECAgent(ValueOptimizationAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id,
|
||||
create_target_network=False)
|
||||
self.current_episode_state_embeddings = []
|
||||
self.current_episode_actions = []
|
||||
self.training_started = False
|
||||
|
||||
def learn_from_batch(self, batch):
|
||||
if not self.main_network.online_network.output_heads[0].DND.has_enough_entries(self.tp.agent.number_of_knn):
|
||||
return 0
|
||||
else:
|
||||
if not self.training_started:
|
||||
self.training_started = True
|
||||
screen.log_title("Finished collecting initial entries in DND. Starting to train network...")
|
||||
|
||||
current_states, next_states, actions, rewards, game_overs, total_return = self.extract_batch(batch)
|
||||
result = self.main_network.train_and_sync_networks([current_states, actions], total_return)
|
||||
total_loss = result[0]
|
||||
|
||||
return total_loss
|
||||
|
||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||
# convert to batch so we can run it through the network
|
||||
observation = np.expand_dims(np.array(curr_state['observation']), 0)
|
||||
|
||||
# get embedding
|
||||
embedding = self.main_network.sess.run(self.main_network.online_network.state_embedding,
|
||||
feed_dict={self.main_network.online_network.inputs[0]: observation})
|
||||
self.current_episode_state_embeddings.append(embedding[0])
|
||||
|
||||
# get action values
|
||||
if self.main_network.online_network.output_heads[0].DND.has_enough_entries(self.tp.agent.number_of_knn):
|
||||
# if there are enough entries in the DND then we can query it to get the action values
|
||||
actions_q_values = []
|
||||
for action in range(self.action_space_size):
|
||||
feed_dict = {
|
||||
self.main_network.online_network.state_embedding: embedding,
|
||||
self.main_network.online_network.output_heads[0].input[0]: np.array([action])
|
||||
}
|
||||
q_value = self.main_network.sess.run(
|
||||
self.main_network.online_network.output_heads[0].output, feed_dict=feed_dict)
|
||||
actions_q_values.append(q_value[0])
|
||||
else:
|
||||
# get only the embedding so we can insert it to the DND
|
||||
actions_q_values = [0] * self.action_space_size
|
||||
|
||||
# choose action according to the exploration policy and the current phase (evaluating or training the agent)
|
||||
if phase == RunPhase.TRAIN:
|
||||
action = self.exploration_policy.get_action(actions_q_values)
|
||||
self.current_episode_actions.append(action)
|
||||
else:
|
||||
action = np.argmax(actions_q_values)
|
||||
|
||||
# store the q values statistics for logging
|
||||
self.q_values.add_sample(actions_q_values)
|
||||
|
||||
# store information for plotting interactively (actual plotting is done in agent)
|
||||
if self.tp.visualization.plot_action_values_online:
|
||||
for idx, action_name in enumerate(self.env.actions_description):
|
||||
self.episode_running_info[action_name].append(actions_q_values[idx])
|
||||
|
||||
action_value = {"action_value": actions_q_values[action]}
|
||||
return action, action_value
|
||||
|
||||
def reset_game(self, do_not_reset_env=False):
|
||||
ValueOptimizationAgent.reset_game(self, do_not_reset_env)
|
||||
|
||||
# make sure we already have at least one episode
|
||||
if self.memory.num_complete_episodes() >= 1 and not self.in_heatup:
|
||||
# get the last full episode that we have collected
|
||||
episode = self.memory.get(-2)
|
||||
returns = []
|
||||
for i in range(episode.length()):
|
||||
returns.append(episode.get_transition(i).total_return)
|
||||
# Just to deal with the end of heatup where there might be a case where it ends in a middle
|
||||
# of an episode, and thus when getting the episode out of the ER, it will be a complete one whereas
|
||||
# the other statistics collected here, are collected only during training.
|
||||
returns = returns[-len(self.current_episode_actions):]
|
||||
self.main_network.online_network.output_heads[0].DND.add(self.current_episode_state_embeddings,
|
||||
self.current_episode_actions, returns)
|
||||
|
||||
self.current_episode_state_embeddings = []
|
||||
self.current_episode_actions = []
|
||||
Reference in New Issue
Block a user