mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
coach v0.8.0
This commit is contained in:
87
agents/policy_gradients_agent.py
Normal file
87
agents/policy_gradients_agent.py
Normal file
@@ -0,0 +1,87 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from agents.policy_optimization_agent import *
|
||||
import numpy as np
|
||||
from logger import *
|
||||
import tensorflow as tf
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from utils import *
|
||||
|
||||
|
||||
class PolicyGradientsAgent(PolicyOptimizationAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
||||
PolicyOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
|
||||
|
||||
self.last_gradient_update_step_idx = 0
|
||||
|
||||
def learn_from_batch(self, batch):
|
||||
# batch contains a list of episodes to learn from
|
||||
current_states, next_states, actions, rewards, game_overs, total_returns = self.extract_batch(batch)
|
||||
|
||||
for i in reversed(range(len(total_returns))):
|
||||
if self.policy_gradient_rescaler == PolicyGradientRescaler.TOTAL_RETURN:
|
||||
total_returns[i] = total_returns[0]
|
||||
elif self.policy_gradient_rescaler == PolicyGradientRescaler.FUTURE_RETURN:
|
||||
# just take the total return as it is
|
||||
pass
|
||||
elif self.policy_gradient_rescaler == PolicyGradientRescaler.FUTURE_RETURN_NORMALIZED_BY_EPISODE:
|
||||
# we can get a single transition episode while playing Doom Basic, causing the std to be 0
|
||||
if self.std_discounted_return != 0:
|
||||
total_returns[i] = (total_returns[i] - self.mean_discounted_return) / self.std_discounted_return
|
||||
else:
|
||||
total_returns[i] = 0
|
||||
elif self.policy_gradient_rescaler == PolicyGradientRescaler.FUTURE_RETURN_NORMALIZED_BY_TIMESTEP:
|
||||
total_returns[i] -= self.mean_return_over_multiple_episodes[i]
|
||||
else:
|
||||
screen.warning("WARNING: The requested policy gradient rescaler is not available")
|
||||
|
||||
targets = total_returns
|
||||
if not self.env.discrete_controls and len(actions.shape) < 2:
|
||||
actions = np.expand_dims(actions, -1)
|
||||
|
||||
logger.create_signal_value('Returns Variance', np.std(total_returns), self.task_id)
|
||||
logger.create_signal_value('Returns Mean', np.mean(total_returns), self.task_id)
|
||||
|
||||
result = self.main_network.online_network.accumulate_gradients([current_states, actions], targets)
|
||||
total_loss = result[0]
|
||||
|
||||
return total_loss
|
||||
|
||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||
# convert to batch so we can run it through the network
|
||||
observation = np.expand_dims(np.array(curr_state['observation']), 0)
|
||||
if self.env.discrete_controls:
|
||||
# DISCRETE
|
||||
action_values = self.main_network.online_network.predict(observation).squeeze()
|
||||
if phase == RunPhase.TRAIN:
|
||||
action = self.exploration_policy.get_action(action_values)
|
||||
else:
|
||||
action = np.argmax(action_values)
|
||||
action_value = {"action_probability": action_values[action]}
|
||||
self.entropy.add_sample(-np.sum(action_values * np.log(action_values)))
|
||||
else:
|
||||
# CONTINUOUS
|
||||
result = self.main_network.online_network.predict(observation)
|
||||
action_values = result[0].squeeze()
|
||||
if phase == RunPhase.TRAIN:
|
||||
action = self.exploration_policy.get_action(action_values)
|
||||
else:
|
||||
action = action_values
|
||||
action_value = {}
|
||||
|
||||
return action, action_value
|
||||
Reference in New Issue
Block a user