1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00

coach v0.8.0

This commit is contained in:
Gal Leibovich
2017-10-19 13:10:15 +03:00
parent 7f77813a39
commit 1d4c3455e7
123 changed files with 10996 additions and 203 deletions

View File

@@ -0,0 +1,129 @@
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import sys
import copy
from ngraph.frontends.neon import *
import ngraph as ng
from architectures.architecture import *
import numpy as np
from utils import *
class NeonArchitecture(Architecture):
def __init__(self, tuning_parameters, name="", global_network=None, network_is_local=True):
Architecture.__init__(self, tuning_parameters, name)
assert tuning_parameters.agent.neon_support, 'Neon is not supported for this agent'
self.clip_error = tuning_parameters.clip_gradients
self.total_loss = None
self.epoch = 0
self.inputs = []
self.outputs = []
self.targets = []
self.losses = []
self.transformer = tuning_parameters.sess
self.network = self.get_model(tuning_parameters)
self.accumulated_gradients = []
# training and inference ops
train_output = ng.sequential([
self.optimizer(self.total_loss),
self.total_loss
])
placeholders = self.inputs + self.targets
self.train_op = self.transformer.add_computation(
ng.computation(
train_output, *placeholders
)
)
self.predict_op = self.transformer.add_computation(
ng.computation(
self.outputs, self.inputs[0]
)
)
# update weights from array op
self.weights = [ng.placeholder(w.axes) for w in self.total_loss.variables()]
self.set_weights_ops = []
for target_variable, variable in zip(self.total_loss.variables(), self.weights):
self.set_weights_ops.append(self.transformer.add_computation(
ng.computation(
ng.assign(target_variable, variable), variable
)
))
# get weights op
self.get_variables = self.transformer.add_computation(
ng.computation(
self.total_loss.variables()
)
)
def predict(self, inputs):
batch_size = inputs.shape[0]
# move batch axis to the end
inputs = inputs.swapaxes(0, -1)
prediction = self.predict_op(inputs) # TODO: problem with multiple inputs
if type(prediction) != tuple:
prediction = (prediction)
# process all the outputs from the network
output = []
for p in prediction:
output.append(p.transpose()[:batch_size].copy())
# if there is only one output then we don't need a list
if len(output) == 1:
output = output[0]
return output
def train_on_batch(self, inputs, targets):
loss = self.accumulate_gradients(inputs, targets)
self.apply_and_reset_gradients(self.accumulated_gradients)
return loss
def get_weights(self):
return self.get_variables()
def set_weights(self, weights, rate=1.0):
if rate != 1:
current_weights = self.get_weights()
updated_weights = [(1 - rate) * t + rate * o for t, o in zip(current_weights, weights)]
else:
updated_weights = weights
for update_function, variable in zip(self.set_weights_ops, updated_weights):
update_function(variable)
def accumulate_gradients(self, inputs, targets):
# Neon doesn't currently allow separating the grads calculation and grad apply operations
# so this feature is not currently available. instead we do a full training iteration
inputs = force_list(inputs)
targets = force_list(targets)
for idx, input in enumerate(inputs):
inputs[idx] = input.swapaxes(0, -1)
for idx, target in enumerate(targets):
targets[idx] = np.rollaxis(target, 0, len(target.shape))
all_inputs = inputs + targets
loss = np.mean(self.train_op(*all_inputs))
return [loss]