1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00

coach v0.8.0

This commit is contained in:
Gal Leibovich
2017-10-19 13:10:15 +03:00
parent 7f77813a39
commit 1d4c3455e7
123 changed files with 10996 additions and 203 deletions

View File

@@ -0,0 +1,88 @@
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import ngraph.frontends.neon as neon
import ngraph as ng
from ngraph.util.names import name_scope
class InputEmbedder:
def __init__(self, input_size, batch_size=None, activation_function=neon.Rectlin(), name="embedder"):
self.name = name
self.input_size = input_size
self.batch_size = batch_size
self.activation_function = activation_function
self.weights_init = neon.GlorotInit()
self.biases_init = neon.ConstantInit()
self.input = None
self.output = None
def __call__(self, prev_input_placeholder=None):
with name_scope(self.get_name()):
# create the input axes
axes = []
if len(self.input_size) == 2:
axis_names = ['H', 'W']
else:
axis_names = ['C', 'H', 'W']
for axis_size, axis_name in zip(self.input_size, axis_names):
axes.append(ng.make_axis(axis_size, name=axis_name))
batch_axis_full = ng.make_axis(self.batch_size, name='N')
input_axes = ng.make_axes(axes)
if prev_input_placeholder is None:
self.input = ng.placeholder(input_axes + [batch_axis_full])
else:
self.input = prev_input_placeholder
self._build_module()
return self.input, self.output(self.input)
def _build_module(self):
pass
def get_name(self):
return self.name
class ImageEmbedder(InputEmbedder):
def __init__(self, input_size, batch_size=None, input_rescaler=255.0, activation_function=neon.Rectlin(), name="embedder"):
InputEmbedder.__init__(self, input_size, batch_size, activation_function, name)
self.input_rescaler = input_rescaler
def _build_module(self):
# image observation
self.output = neon.Sequential([
neon.Preprocess(functor=lambda x: x / self.input_rescaler),
neon.Convolution((8, 8, 32), strides=4, activation=self.activation_function,
filter_init=self.weights_init, bias_init=self.biases_init),
neon.Convolution((4, 4, 64), strides=2, activation=self.activation_function,
filter_init=self.weights_init, bias_init=self.biases_init),
neon.Convolution((3, 3, 64), strides=1, activation=self.activation_function,
filter_init=self.weights_init, bias_init=self.biases_init)
])
class VectorEmbedder(InputEmbedder):
def __init__(self, input_size, batch_size=None, activation_function=neon.Rectlin(), name="embedder"):
InputEmbedder.__init__(self, input_size, batch_size, activation_function, name)
def _build_module(self):
# vector observation
self.output = neon.Sequential([
neon.Affine(nout=256, activation=self.activation_function,
weight_init=self.weights_init, bias_init=self.biases_init)
])