1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00

coach v0.8.0

This commit is contained in:
Gal Leibovich
2017-10-19 13:10:15 +03:00
parent 7f77813a39
commit 1d4c3455e7
123 changed files with 10996 additions and 203 deletions

View File

@@ -0,0 +1,179 @@
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
from configurations import Preset, Frameworks
from logger import *
try:
import tensorflow as tf
from architectures.tensorflow_components.general_network import GeneralTensorFlowNetwork
except ImportError:
failed_imports.append("TensorFlow")
try:
from architectures.neon_components.general_network import GeneralNeonNetwork
except ImportError:
failed_imports.append("Neon")
class NetworkWrapper:
def __init__(self, tuning_parameters, has_target, has_global, name, replicated_device=None, worker_device=None):
"""
:param tuning_parameters:
:type tuning_parameters: Preset
:param has_target:
:param has_global:
:param name:
:param replicated_device:
:param worker_device:
"""
self.tp = tuning_parameters
self.has_target = has_target
self.has_global = has_global
self.name = name
self.sess = tuning_parameters.sess
if self.tp.framework == Frameworks.TensorFlow:
general_network = GeneralTensorFlowNetwork
elif self.tp.framework == Frameworks.Neon:
general_network = GeneralNeonNetwork
else:
raise Exception("{} Framework is not supported".format(Frameworks().to_string(self.tp.framework)))
# Global network - the main network shared between threads
self.global_network = None
if self.has_global:
with tf.device(replicated_device):
self.global_network = general_network(tuning_parameters, '{}/global'.format(name),
network_is_local=False)
# Online network - local copy of the main network used for playing
self.online_network = None
with tf.device(worker_device):
self.online_network = general_network(tuning_parameters, '{}/online'.format(name),
self.global_network, network_is_local=True)
# Target network - a local, slow updating network used for stabilizing the learning
self.target_network = None
if self.has_target:
with tf.device(worker_device):
self.target_network = general_network(tuning_parameters, '{}/target'.format(name),
network_is_local=True)
if not self.tp.distributed and self.tp.framework == Frameworks.TensorFlow:
self.model_saver = tf.train.Saver()
if self.tp.sess and self.tp.checkpoint_restore_dir:
checkpoint = tf.train.latest_checkpoint(self.tp.checkpoint_restore_dir)
screen.log_title("Loading checkpoint: {}".format(checkpoint))
self.model_saver.restore(self.tp.sess, checkpoint)
def sync(self):
"""
Initializes the weights of the networks to match each other
:return:
"""
self.update_online_network()
self.update_target_network()
def update_target_network(self, rate=1.0):
"""
Copy weights: online network >>> target network
:param rate: the rate of copying the weights - 1 for copying exactly
"""
if self.target_network:
self.target_network.set_weights(self.online_network.get_weights(), rate)
def update_online_network(self, rate=1.0):
"""
Copy weights: global network >>> online network
:param rate: the rate of copying the weights - 1 for copying exactly
"""
if self.global_network:
self.online_network.set_weights(self.global_network.get_weights(), rate)
def apply_gradients_to_global_network(self):
"""
Apply gradients from the online network on the global network
:return:
"""
self.global_network.apply_gradients(self.online_network.accumulated_gradients)
def apply_gradients_to_online_network(self):
"""
Apply gradients from the online network on itself
:return:
"""
self.online_network.apply_gradients(self.online_network.accumulated_gradients)
def train_and_sync_networks(self, inputs, targets):
"""
A generic training function that enables multi-threading training using a global network if necessary.
:param inputs: The inputs for the network.
:param targets: The targets corresponding to the given inputs
:return: The loss of the training iteration
"""
result = self.online_network.accumulate_gradients(inputs, targets)
self.apply_gradients_and_sync_networks()
return result
def apply_gradients_and_sync_networks(self):
"""
Applies the gradients accumulated in the online network to the global network or to itself and syncs the
networks if necessary
"""
if self.global_network:
self.apply_gradients_to_global_network()
self.online_network.reset_accumulated_gradients()
self.update_online_network()
else:
self.online_network.apply_and_reset_gradients(self.online_network.accumulated_gradients)
def get_local_variables(self):
"""
Get all the variables that are local to the thread
:return: a list of all the variables that are local to the thread
"""
local_variables = [v for v in tf.global_variables() if self.online_network.name in v.name]
if self.has_target:
local_variables += [v for v in tf.global_variables() if self.target_network.name in v.name]
return local_variables
def get_global_variables(self):
"""
Get all the variables that are shared between threads
:return: a list of all the variables that are shared between threads
"""
global_variables = [v for v in tf.global_variables() if self.global_network.name in v.name]
return global_variables
def set_session(self, sess):
self.sess = sess
self.online_network.sess = sess
if self.global_network:
self.global_network.sess = sess
if self.target_network:
self.target_network.sess = sess
def save_model(self, model_id):
saved_model_path = self.model_saver.save(self.tp.sess, os.path.join(self.tp.save_model_dir,
str(model_id) + '.ckpt'))
screen.log_dict(
OrderedDict([
("Saving model", saved_model_path),
]),
prefix="Checkpoint"
)