mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
coach v0.8.0
This commit is contained in:
179
architectures/network_wrapper.py
Normal file
179
architectures/network_wrapper.py
Normal file
@@ -0,0 +1,179 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from collections import OrderedDict
|
||||
from configurations import Preset, Frameworks
|
||||
from logger import *
|
||||
try:
|
||||
import tensorflow as tf
|
||||
from architectures.tensorflow_components.general_network import GeneralTensorFlowNetwork
|
||||
except ImportError:
|
||||
failed_imports.append("TensorFlow")
|
||||
|
||||
try:
|
||||
from architectures.neon_components.general_network import GeneralNeonNetwork
|
||||
except ImportError:
|
||||
failed_imports.append("Neon")
|
||||
|
||||
|
||||
class NetworkWrapper:
|
||||
def __init__(self, tuning_parameters, has_target, has_global, name, replicated_device=None, worker_device=None):
|
||||
"""
|
||||
|
||||
:param tuning_parameters:
|
||||
:type tuning_parameters: Preset
|
||||
:param has_target:
|
||||
:param has_global:
|
||||
:param name:
|
||||
:param replicated_device:
|
||||
:param worker_device:
|
||||
"""
|
||||
self.tp = tuning_parameters
|
||||
self.has_target = has_target
|
||||
self.has_global = has_global
|
||||
self.name = name
|
||||
self.sess = tuning_parameters.sess
|
||||
|
||||
if self.tp.framework == Frameworks.TensorFlow:
|
||||
general_network = GeneralTensorFlowNetwork
|
||||
elif self.tp.framework == Frameworks.Neon:
|
||||
general_network = GeneralNeonNetwork
|
||||
else:
|
||||
raise Exception("{} Framework is not supported".format(Frameworks().to_string(self.tp.framework)))
|
||||
|
||||
# Global network - the main network shared between threads
|
||||
self.global_network = None
|
||||
if self.has_global:
|
||||
with tf.device(replicated_device):
|
||||
self.global_network = general_network(tuning_parameters, '{}/global'.format(name),
|
||||
network_is_local=False)
|
||||
|
||||
# Online network - local copy of the main network used for playing
|
||||
self.online_network = None
|
||||
with tf.device(worker_device):
|
||||
self.online_network = general_network(tuning_parameters, '{}/online'.format(name),
|
||||
self.global_network, network_is_local=True)
|
||||
|
||||
# Target network - a local, slow updating network used for stabilizing the learning
|
||||
self.target_network = None
|
||||
if self.has_target:
|
||||
with tf.device(worker_device):
|
||||
self.target_network = general_network(tuning_parameters, '{}/target'.format(name),
|
||||
network_is_local=True)
|
||||
|
||||
if not self.tp.distributed and self.tp.framework == Frameworks.TensorFlow:
|
||||
self.model_saver = tf.train.Saver()
|
||||
if self.tp.sess and self.tp.checkpoint_restore_dir:
|
||||
checkpoint = tf.train.latest_checkpoint(self.tp.checkpoint_restore_dir)
|
||||
screen.log_title("Loading checkpoint: {}".format(checkpoint))
|
||||
self.model_saver.restore(self.tp.sess, checkpoint)
|
||||
|
||||
def sync(self):
|
||||
"""
|
||||
Initializes the weights of the networks to match each other
|
||||
:return:
|
||||
"""
|
||||
self.update_online_network()
|
||||
self.update_target_network()
|
||||
|
||||
def update_target_network(self, rate=1.0):
|
||||
"""
|
||||
Copy weights: online network >>> target network
|
||||
:param rate: the rate of copying the weights - 1 for copying exactly
|
||||
"""
|
||||
if self.target_network:
|
||||
self.target_network.set_weights(self.online_network.get_weights(), rate)
|
||||
|
||||
def update_online_network(self, rate=1.0):
|
||||
"""
|
||||
Copy weights: global network >>> online network
|
||||
:param rate: the rate of copying the weights - 1 for copying exactly
|
||||
"""
|
||||
if self.global_network:
|
||||
self.online_network.set_weights(self.global_network.get_weights(), rate)
|
||||
|
||||
def apply_gradients_to_global_network(self):
|
||||
"""
|
||||
Apply gradients from the online network on the global network
|
||||
:return:
|
||||
"""
|
||||
self.global_network.apply_gradients(self.online_network.accumulated_gradients)
|
||||
|
||||
def apply_gradients_to_online_network(self):
|
||||
"""
|
||||
Apply gradients from the online network on itself
|
||||
:return:
|
||||
"""
|
||||
self.online_network.apply_gradients(self.online_network.accumulated_gradients)
|
||||
|
||||
def train_and_sync_networks(self, inputs, targets):
|
||||
"""
|
||||
A generic training function that enables multi-threading training using a global network if necessary.
|
||||
:param inputs: The inputs for the network.
|
||||
:param targets: The targets corresponding to the given inputs
|
||||
:return: The loss of the training iteration
|
||||
"""
|
||||
result = self.online_network.accumulate_gradients(inputs, targets)
|
||||
self.apply_gradients_and_sync_networks()
|
||||
return result
|
||||
|
||||
def apply_gradients_and_sync_networks(self):
|
||||
"""
|
||||
Applies the gradients accumulated in the online network to the global network or to itself and syncs the
|
||||
networks if necessary
|
||||
"""
|
||||
if self.global_network:
|
||||
self.apply_gradients_to_global_network()
|
||||
self.online_network.reset_accumulated_gradients()
|
||||
self.update_online_network()
|
||||
else:
|
||||
self.online_network.apply_and_reset_gradients(self.online_network.accumulated_gradients)
|
||||
|
||||
def get_local_variables(self):
|
||||
"""
|
||||
Get all the variables that are local to the thread
|
||||
:return: a list of all the variables that are local to the thread
|
||||
"""
|
||||
local_variables = [v for v in tf.global_variables() if self.online_network.name in v.name]
|
||||
if self.has_target:
|
||||
local_variables += [v for v in tf.global_variables() if self.target_network.name in v.name]
|
||||
return local_variables
|
||||
|
||||
def get_global_variables(self):
|
||||
"""
|
||||
Get all the variables that are shared between threads
|
||||
:return: a list of all the variables that are shared between threads
|
||||
"""
|
||||
global_variables = [v for v in tf.global_variables() if self.global_network.name in v.name]
|
||||
return global_variables
|
||||
|
||||
def set_session(self, sess):
|
||||
self.sess = sess
|
||||
self.online_network.sess = sess
|
||||
if self.global_network:
|
||||
self.global_network.sess = sess
|
||||
if self.target_network:
|
||||
self.target_network.sess = sess
|
||||
|
||||
def save_model(self, model_id):
|
||||
saved_model_path = self.model_saver.save(self.tp.sess, os.path.join(self.tp.save_model_dir,
|
||||
str(model_id) + '.ckpt'))
|
||||
screen.log_dict(
|
||||
OrderedDict([
|
||||
("Saving model", saved_model_path),
|
||||
]),
|
||||
prefix="Checkpoint"
|
||||
)
|
||||
Reference in New Issue
Block a user