1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00

coach v0.8.0

This commit is contained in:
Gal Leibovich
2017-10-19 13:10:15 +03:00
parent 7f77813a39
commit 1d4c3455e7
123 changed files with 10996 additions and 203 deletions

880
dashboard.py Normal file
View File

@@ -0,0 +1,880 @@
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
To run Coach Dashboard, run the following command:
python dashboard.py
"""
from utils import *
import os
import datetime
import sys
import wx
import random
import pandas as pd
from pandas.io.common import EmptyDataError
import numpy as np
from bokeh.palettes import Dark2
from bokeh.layouts import row, column, widgetbox, Spacer
from bokeh.models import ColumnDataSource, Range1d, LinearAxis, HoverTool, WheelZoomTool, PanTool
from bokeh.models.widgets import RadioButtonGroup, MultiSelect, Button, Select, Slider, Div, CheckboxGroup
from bokeh.models.glyphs import Patch
from bokeh.plotting import figure, show, curdoc
from utils import force_list
from utils import squeeze_list
from itertools import cycle
from os import listdir
from os.path import isfile, join, isdir, basename
from enum import Enum
class DialogApp(wx.App):
def getFileDialog(self):
with wx.FileDialog(None, "Open CSV file", wildcard="CSV files (*.csv)|*.csv",
style=wx.FD_OPEN | wx.FD_FILE_MUST_EXIST | wx.FD_CHANGE_DIR | wx.FD_MULTIPLE) as fileDialog:
if fileDialog.ShowModal() == wx.ID_CANCEL:
return None # the user changed their mind
else:
# Proceed loading the file chosen by the user
return fileDialog.GetPaths()
def getDirDialog(self):
with wx.DirDialog (None, "Choose input directory", "",
style=wx.FD_OPEN | wx.FD_FILE_MUST_EXIST | wx.FD_CHANGE_DIR) as dirDialog:
if dirDialog.ShowModal() == wx.ID_CANCEL:
return None # the user changed their mind
else:
# Proceed loading the dir chosen by the user
return dirDialog.GetPath()
class Signal:
def __init__(self, name, parent):
self.name = name
self.full_name = "{}/{}".format(parent.filename, self.name)
self.selected = False
self.color = random.choice(Dark2[8])
self.line = None
self.bands = None
self.bokeh_source = parent.bokeh_source
self.min_val = 0
self.max_val = 0
self.axis = 'default'
self.sub_signals = []
for name in self.bokeh_source.data.keys():
if (len(name.split('/')) == 1 and name == self.name) or '/'.join(name.split('/')[:-1]) == self.name:
self.sub_signals.append(name)
if len(self.sub_signals) > 1:
self.mean_signal = squeeze_list([name for name in self.sub_signals if 'Mean' in name.split('/')[-1]])
self.stdev_signal = squeeze_list([name for name in self.sub_signals if 'Stdev' in name.split('/')[-1]])
self.min_signal = squeeze_list([name for name in self.sub_signals if 'Min' in name.split('/')[-1]])
self.max_signal = squeeze_list([name for name in self.sub_signals if 'Max' in name.split('/')[-1]])
else:
self.mean_signal = squeeze_list(self.name)
self.stdev_signal = None
self.min_signal = None
self.max_signal = None
self.has_bollinger_bands = False
if self.mean_signal and self.stdev_signal and self.min_signal and self.max_signal:
self.has_bollinger_bands = True
self.show_bollinger_bands = False
self.bollinger_bands_source = None
self.update_range()
def set_selected(self, val):
global current_color
if self.selected != val:
self.selected = val
if self.line:
self.color = Dark2[8][current_color]
current_color = (current_color + 1) % len(Dark2[8])
self.line.glyph.line_color = self.color
self.line.visible = self.selected
if self.bands:
self.bands.glyph.fill_color = self.color
self.bands.visible = self.selected and self.show_bollinger_bands
elif self.selected:
# lazy plotting - plot only when selected for the first time
show_spinner()
self.color = Dark2[8][current_color]
current_color = (current_color + 1) % len(Dark2[8])
if self.has_bollinger_bands:
self.set_bands_source()
self.create_bands()
self.line = plot.line('index', self.mean_signal, source=self.bokeh_source,
line_color=self.color, line_width=2)
self.line.visible = True
hide_spinner()
def set_dash(self, dash):
self.line.glyph.line_dash = dash
def create_bands(self):
self.bands = plot.patch(x='band_x', y='band_y', source=self.bollinger_bands_source,
color=self.color, fill_alpha=0.4, alpha=0.1, line_width=0)
self.bands.visible = self.show_bollinger_bands
# self.min_line = plot.line('index', self.min_signal, source=self.bokeh_source,
# line_color=self.color, line_width=3, line_dash="4 4")
# self.max_line = plot.line('index', self.max_signal, source=self.bokeh_source,
# line_color=self.color, line_width=3, line_dash="4 4")
# self.min_line.visible = self.show_bollinger_bands
# self.max_line.visible = self.show_bollinger_bands
def set_bands_source(self):
x_ticks = self.bokeh_source.data['index']
mean_values = self.bokeh_source.data[self.mean_signal]
stdev_values = self.bokeh_source.data[self.stdev_signal]
band_x = np.append(x_ticks, x_ticks[::-1])
band_y = np.append(mean_values - stdev_values, mean_values[::-1] + stdev_values[::-1])
source_data = {'band_x': band_x, 'band_y': band_y}
if self.bollinger_bands_source:
self.bollinger_bands_source.data = source_data
else:
self.bollinger_bands_source = ColumnDataSource(source_data)
def change_bollinger_bands_state(self, new_state):
self.show_bollinger_bands = new_state
if self.bands and self.selected:
self.bands.visible = new_state
# self.min_line.visible = new_state
# self.max_line.visible = new_state
def update_range(self):
self.min_val = np.min(self.bokeh_source.data[self.mean_signal])
self.max_val = np.max(self.bokeh_source.data[self.mean_signal])
def set_axis(self, axis):
self.axis = axis
self.line.y_range_name = axis
def toggle_axis(self):
if self.axis == 'default':
self.set_axis('secondary')
else:
self.set_axis('default')
class SignalsFileBase:
def __init__(self):
self.full_csv_path = ""
self.dir = ""
self.filename = ""
self.signals_averaging_window = 1
self.show_bollinger_bands = False
self.csv = None
self.bokeh_source = None
self.bokeh_source_orig = None
self.last_modified = None
self.signals = {}
self.separate_files = False
def load_csv(self):
pass
def update_source_and_signals(self):
# create bokeh data sources
self.bokeh_source_orig = ColumnDataSource(self.csv)
self.bokeh_source_orig.data['index'] = self.bokeh_source_orig.data[x_axis]
if self.bokeh_source is None:
self.bokeh_source = ColumnDataSource(self.csv)
else:
# self.bokeh_source.data = self.bokeh_source_orig.data
# smooth the data if necessary
self.change_averaging_window(self.signals_averaging_window, force=True)
# create all the signals
if len(self.signals.keys()) == 0:
self.signals = {}
unique_signal_names = []
for name in self.csv.columns:
if len(name.split('/')) == 1:
unique_signal_names.append(name)
else:
unique_signal_names.append('/'.join(name.split('/')[:-1]))
unique_signal_names = list(set(unique_signal_names))
for signal_name in unique_signal_names:
self.signals[signal_name] = Signal(signal_name, self)
def load(self):
self.load_csv()
self.update_source_and_signals()
def reload_data(self, signals):
# this function is a workaround to reload the data of all the signals
# if the data doesn't change, bokeh does not refreshes the line
self.change_averaging_window(self.signals_averaging_window + 1, force=True)
self.change_averaging_window(self.signals_averaging_window - 1, force=True)
def change_averaging_window(self, new_size, force=False, signals=None):
if force or self.signals_averaging_window != new_size:
self.signals_averaging_window = new_size
win = np.ones(new_size) / new_size
temp_data = self.bokeh_source_orig.data.copy()
for col in self.bokeh_source.data.keys():
if col == 'index' or col in x_axis_options \
or (signals and not any(col in signal for signal in signals)):
temp_data[col] = temp_data[col][:-new_size]
continue
temp_data[col] = np.convolve(self.bokeh_source_orig.data[col], win, mode='same')[:-new_size]
self.bokeh_source.data = temp_data
# smooth bollinger bands
for signal in self.signals.values():
if signal.has_bollinger_bands:
signal.set_bands_source()
def hide_all_signals(self):
for signal_name in self.signals.keys():
self.set_signal_selection(signal_name, False)
def set_signal_selection(self, signal_name, val):
self.signals[signal_name].set_selected(val)
def change_bollinger_bands_state(self, new_state):
self.show_bollinger_bands = new_state
for signal in self.signals.values():
signal.change_bollinger_bands_state(new_state)
def file_was_modified_on_disk(self):
pass
def get_range_of_selected_signals_on_axis(self, axis):
max_val = -float('inf')
min_val = float('inf')
for signal in self.signals.values():
if signal.selected and signal.axis == axis:
max_val = max(max_val, signal.max_val)
min_val = min(min_val, signal.min_val)
return min_val, max_val
def get_selected_signals(self):
signals = []
for signal in self.signals.values():
if signal.selected:
signals.append(signal)
return signals
def show_files_separately(self, val):
pass
class SignalsFile(SignalsFileBase):
def __init__(self, csv_path, load=True):
SignalsFileBase.__init__(self)
self.full_csv_path = csv_path
self.dir, self.filename, _ = break_file_path(csv_path)
if load:
self.load()
def load_csv(self):
# load csv and fix sparse data.
# csv can be in the middle of being written so we use try - except
self.csv = None
while self.csv is None:
try:
self.csv = pd.read_csv(self.full_csv_path)
break
except EmptyDataError:
self.csv = None
continue
self.csv = self.csv.interpolate()
self.csv.fillna(value=0, inplace=True)
self.last_modified = os.path.getmtime(self.full_csv_path)
def file_was_modified_on_disk(self):
return self.last_modified != os.path.getmtime(self.full_csv_path)
class SignalsFilesGroup(SignalsFileBase):
def __init__(self, csv_paths):
SignalsFileBase.__init__(self)
self.full_csv_paths = csv_paths
self.signals_files = []
if len(csv_paths) == 1 and os.path.isdir(csv_paths[0]):
self.signals_files = [SignalsFile(str(file), load=False) for file in add_directory_csv_files(csv_paths[0])]
else:
for csv_path in csv_paths:
if os.path.isdir(csv_path):
self.signals_files.append(SignalsFilesGroup(add_directory_csv_files(csv_path)))
else:
self.signals_files.append(SignalsFile(str(csv_path), load=False))
self.dir = os.path.dirname(os.path.commonprefix(csv_paths))
self.filename = '{} - Group({})'.format(basename(self.dir), len(self.signals_files))
self.load()
def load_csv(self):
corrupted_files_idx = []
for idx, signal_file in enumerate(self.signals_files):
signal_file.load_csv()
if not all(option in signal_file.csv.keys() for option in x_axis_options):
print("Warning: {} file seems to be corrupted and does contain the necessary columns "
"and will not be rendered".format(signal_file.filename))
corrupted_files_idx.append(idx)
for file_idx in corrupted_files_idx:
del self.signals_files[file_idx]
# get the stats of all the columns
csv_group = pd.concat([signals_file.csv for signals_file in self.signals_files])
columns_to_remove = [s for s in csv_group.columns if '/Stdev' in s] + \
[s for s in csv_group.columns if '/Min' in s] + \
[s for s in csv_group.columns if '/Max' in s]
for col in columns_to_remove:
del csv_group[col]
csv_group = csv_group.groupby(csv_group.index)
self.csv_mean = csv_group.mean()
self.csv_mean.columns = [s + '/Mean' for s in self.csv_mean.columns]
self.csv_stdev = csv_group.std()
self.csv_stdev.columns = [s + '/Stdev' for s in self.csv_stdev.columns]
self.csv_min = csv_group.min()
self.csv_min.columns = [s + '/Min' for s in self.csv_min.columns]
self.csv_max = csv_group.max()
self.csv_max.columns = [s + '/Max' for s in self.csv_max.columns]
# get the indices from the file with the least number of indices and which is not an evaluation worker
file_with_min_indices = self.signals_files[0]
for signals_file in self.signals_files:
if signals_file.csv.shape[0] < file_with_min_indices.csv.shape[0] and \
'Training reward' in signals_file.csv.keys():
file_with_min_indices = signals_file
self.index_columns = file_with_min_indices.csv[x_axis_options]
# concat the stats and the indices columns
num_rows = file_with_min_indices.csv.shape[0]
self.csv = pd.concat([self.index_columns, self.csv_mean.head(num_rows), self.csv_stdev.head(num_rows),
self.csv_min.head(num_rows), self.csv_max.head(num_rows)], axis=1)
# remove the stat columns for the indices columns
columns_to_remove = [s + '/Mean' for s in x_axis_options] + \
[s + '/Stdev' for s in x_axis_options] + \
[s + '/Min' for s in x_axis_options] + \
[s + '/Max' for s in x_axis_options]
for col in columns_to_remove:
del self.csv[col]
# remove NaNs
# self.csv.fillna(value=0, inplace=True)
for key in self.csv.keys():
if 'Stdev' in key and 'Evaluation' not in key:
self.csv[key] = self.csv[key].fillna(value=0)
for signal_file in self.signals_files:
signal_file.update_source_and_signals()
def change_averaging_window(self, new_size, force=False, signals=None):
for signal_file in self.signals_files:
signal_file.change_averaging_window(new_size, force, signals)
SignalsFileBase.change_averaging_window(self, new_size, force, signals)
def set_signal_selection(self, signal_name, val):
self.show_files_separately(self.separate_files)
SignalsFileBase.set_signal_selection(self, signal_name, val)
def file_was_modified_on_disk(self):
for signal_file in self.signals_files:
if signal_file.file_was_modified_on_disk():
return True
return False
def show_files_separately(self, val):
self.separate_files = val
for signal in self.signals.values():
if signal.selected:
if val:
signal.set_dash("4 4")
else:
signal.set_dash("")
for signal_file in self.signals_files:
try:
if val:
signal_file.set_signal_selection(signal.name, signal.selected)
else:
signal_file.set_signal_selection(signal.name, False)
except:
pass
class RunType(Enum):
SINGLE_FOLDER_SINGLE_FILE = 1
SINGLE_FOLDER_MULTIPLE_FILES = 2
MULTIPLE_FOLDERS_SINGLE_FILES = 3
MULTIPLE_FOLDERS_MULTIPLE_FILES = 4
UNKNOWN = 0
class FolderType(Enum):
SINGLE_FILE = 1
MULTIPLE_FILES = 2
MULTIPLE_FOLDERS = 3
EMPTY = 4
dialog = DialogApp()
# read data
patches = {}
signals_files = {}
selected_file = None
x_axis = 'Episode #'
x_axis_options = ['Episode #', 'Total steps', 'Wall-Clock Time']
current_color = 0
# spinner
root_dir = os.path.dirname(os.path.abspath(__file__))
with open(os.path.join(root_dir, 'spinner.css'), 'r') as f:
spinner_style = """<style>{}</style>""".format(f.read())
spinner_html = """<ul class="spinner"><li></li><li></li><li></li><li></li></ul>"""
spinner = Div(text="""""")
# file refresh time placeholder
refresh_info = Div(text="""""", width=210)
# legend
div = Div(text="""""")
legend = widgetbox([div])
# create figures
plot = figure(plot_width=800, plot_height=800,
tools='pan,box_zoom,wheel_zoom,crosshair,reset,save',
toolbar_location='above', x_axis_label='Episodes')
plot.extra_y_ranges = {"secondary": Range1d(start=-100, end=200)}
plot.add_layout(LinearAxis(y_range_name="secondary"), 'right')
def update_axis_range(name, range_placeholder):
max_val = -float('inf')
min_val = float('inf')
for signals_file in signals_files.values():
curr_min_val, curr_max_val = signals_file.get_range_of_selected_signals_on_axis(name)
max_val = max(max_val, curr_max_val)
min_val = min(min_val, curr_min_val)
if min_val != float('inf'):
range = max_val - min_val
range_placeholder.start = min_val - 0.1 * range
range_placeholder.end = max_val + 0.1 * range
# update axes ranges
def update_ranges():
update_axis_range('default', plot.y_range)
update_axis_range('secondary', plot.extra_y_ranges['secondary'])
def get_all_selected_signals():
signals = []
for signals_file in signals_files.values():
signals += signals_file.get_selected_signals()
return signals
# update legend using the legend text dictionary
def update_legend():
legend_text = """<div></div>"""
selected_signals = get_all_selected_signals()
for signal in selected_signals:
side_sign = "<" if signal.axis == 'default' else ">"
legend_text += """<div style='color: {}'><b>{} {}</b></div>"""\
.format(signal.color, side_sign, signal.full_name)
div.text = legend_text
# select lines to display
def select_data(args, old, new):
if selected_file is None:
return
show_spinner()
selected_signals = new
for signal_name in selected_file.signals.keys():
is_selected = signal_name in selected_signals
selected_file.set_signal_selection(signal_name, is_selected)
# update axes ranges
update_ranges()
# update the legend
update_legend()
hide_spinner()
# add new lines to the plot
def plot_signals(signals_file, signals):
for idx, signal in enumerate(signals):
signal.line = plot.line('index', signal.name, source=signals_file.bokeh_source,
line_color=signal.color, line_width=2)
def open_file_dialog():
return dialog.getFileDialog()
def open_directory_dialog():
return dialog.getDirDialog()
def show_spinner():
spinner.text = spinner_style + spinner_html
def hide_spinner():
spinner.text = ""
# will create a group from the files
def create_files_group_signal(files):
global selected_file
signals_file = SignalsFilesGroup(files)
signals_files[signals_file.filename] = signals_file
filenames = [signals_file.filename]
files_selector.options += filenames
files_selector.value = filenames[0]
selected_file = signals_file
# load files from disk as a group
def load_files_group():
show_spinner()
files = open_file_dialog()
# no files selected
if not files or not files[0]:
hide_spinner()
return
change_displayed_doc()
if len(files) == 1:
create_files_signal(files)
else:
create_files_group_signal(files)
change_selected_signals_in_data_selector([""])
hide_spinner()
# classify the folder as containing a single file, multiple files or only folders
def classify_folder(dir_path):
files = [f for f in listdir(dir_path) if isfile(join(dir_path, f)) and f.endswith('.csv')]
folders = [d for d in listdir(dir_path) if isdir(join(dir_path, d))]
if len(files) == 1:
return FolderType.SINGLE_FILE
elif len(files) > 1:
return FolderType.MULTIPLE_FILES
elif len(folders) >= 1:
return FolderType.MULTIPLE_FOLDERS
else:
return FolderType.EMPTY
# finds if this is single-threaded or multi-threaded
def get_run_type(dir_path):
folder_type = classify_folder(dir_path)
if folder_type == FolderType.SINGLE_FILE:
return RunType.SINGLE_FOLDER_SINGLE_FILE
elif folder_type == FolderType.MULTIPLE_FILES:
return RunType.SINGLE_FOLDER_MULTIPLE_FILES
elif folder_type == FolderType.MULTIPLE_FOLDERS:
# folder contains sub dirs -> we assume we can classify the folder using only the first sub dir
sub_dirs = [d for d in listdir(dir_path) if isdir(join(dir_path, d))]
# checking only the first folder in the root dir for its type, since we assume that all sub dirs will share the
# same structure (i.e. if one is a result of multi-threaded run, so will all the other).
folder_type = classify_folder(os.path.join(dir_path, sub_dirs[0]))
if folder_type == FolderType.SINGLE_FILE:
folder_type = RunType.MULTIPLE_FOLDERS_SINGLE_FILES
elif folder_type == FolderType.MULTIPLE_FILES:
folder_type = RunType.MULTIPLE_FOLDERS_MULTIPLE_FILES
return folder_type
# takes path to dir and recursively adds all it's files to paths
def add_directory_csv_files(dir_path, paths=None):
if not paths:
paths = []
for p in listdir(dir_path):
path = join(dir_path, p)
if isdir(path):
# call recursively for each dir
paths = add_directory_csv_files(path, paths)
elif isfile(path) and path.endswith('.csv'):
# add every file to the list
paths.append(path)
return paths
# create a signal file from the directory path according to the directory underlying structure
def handle_dir(dir_path, run_type):
paths = add_directory_csv_files(dir_path)
if run_type == RunType.SINGLE_FOLDER_SINGLE_FILE:
create_files_signal(paths)
elif run_type == RunType.SINGLE_FOLDER_MULTIPLE_FILES:
create_files_group_signal(paths)
elif run_type == RunType.MULTIPLE_FOLDERS_SINGLE_FILES:
create_files_group_signal(paths)
elif run_type == RunType.MULTIPLE_FOLDERS_MULTIPLE_FILES:
sub_dirs = [d for d in listdir(dir_path) if isdir(join(dir_path, d))]
# for d in sub_dirs:
# paths = add_directory_csv_files(os.path.join(dir_path, d))
# create_files_group_signal(paths)
create_files_group_signal([os.path.join(dir_path, d) for d in sub_dirs])
# load directory from disk as a group
def load_directory_group():
global selected_file
show_spinner()
directory = open_directory_dialog()
# no files selected
if not directory:
hide_spinner()
return
change_displayed_doc()
handle_dir(directory, get_run_type(directory))
change_selected_signals_in_data_selector([""])
hide_spinner()
def create_files_signal(files):
global selected_file
new_signal_files = []
for idx, file_path in enumerate(files):
signals_file = SignalsFile(str(file_path))
signals_files[signals_file.filename] = signals_file
new_signal_files.append(signals_file)
filenames = [f.filename for f in new_signal_files]
files_selector.options += filenames
files_selector.value = filenames[0]
selected_file = new_signal_files[0]
# load files from disk
def load_files():
show_spinner()
files = open_file_dialog()
# no files selected
if not files or not files[0]:
hide_spinner()
return
create_files_signal(files)
hide_spinner()
change_selected_signals_in_data_selector([""])
def unload_file():
global selected_file
global signals_files
if selected_file is None:
return
selected_file.hide_all_signals()
del signals_files[selected_file.filename]
data_selector.options = [""]
filenames = cycle(files_selector.options)
files_selector.options.remove(selected_file.filename)
if len(files_selector.options) > 0:
files_selector.value = next(filenames)
else:
files_selector.value = None
update_legend()
refresh_info.text = ""
# reload the selected csv file
def reload_all_files(force=False):
for file_to_load in signals_files.values():
if force or file_to_load.file_was_modified_on_disk():
file_to_load.load()
refresh_info.text = "last update: " + str(datetime.datetime.now()).split(".")[0]
# unselect the currently selected signals and then select the requested signals in the data selector
def change_selected_signals_in_data_selector(selected_signals):
# the default bokeh way is not working due to a bug since Bokeh 0.12.6 (https://github.com/bokeh/bokeh/issues/6501)
for value in list(data_selector.value):
if value in data_selector.options:
index = data_selector.options.index(value)
data_selector.options.remove(value)
data_selector.value.remove(value)
data_selector.options.insert(index, value)
data_selector.value = selected_signals
# change data options according to the selected file
def change_data_selector(args, old, new):
global selected_file
if new is None:
selected_file = None
return
show_spinner()
selected_file = signals_files[new]
data_selector.options = sorted(list(selected_file.signals.keys()))
selected_signal_names = [s.name for s in selected_file.signals.values() if s.selected]
if not selected_signal_names:
selected_signal_names = [""]
change_selected_signals_in_data_selector(selected_signal_names)
averaging_slider.value = selected_file.signals_averaging_window
group_cb.active = [0 if selected_file.show_bollinger_bands else None]
group_cb.active += [1 if selected_file.separate_files else None]
hide_spinner()
# smooth all the signals of the selected file
def update_averaging(args, old, new):
show_spinner()
selected_file.change_averaging_window(new)
hide_spinner()
def change_x_axis(val):
global x_axis
show_spinner()
x_axis = x_axis_options[val]
reload_all_files(force=True)
hide_spinner()
# move the signal between the main and secondary Y axes
def toggle_second_axis():
show_spinner()
signals = selected_file.get_selected_signals()
for signal in signals:
signal.toggle_axis()
update_ranges()
update_legend()
# this is just for redrawing the signals
selected_file.reload_data([signal.name for signal in signals])
hide_spinner()
def toggle_group_property(new):
# toggle show / hide Bollinger bands
selected_file.change_bollinger_bands_state(0 in new)
# show a separate signal for each file in a group
selected_file.show_files_separately(1 in new)
def change_displayed_doc():
if doc.roots[0] == landing_page:
doc.remove_root(landing_page)
doc.add_root(layout)
# ---------------- Build Website Layout -------------------
# select file
file_selection_button = Button(label="Select Files", button_type="success", width=120)
file_selection_button.on_click(load_files_group)
files_selector_spacer = Spacer(width=10)
group_selection_button = Button(label="Select Directory", button_type="primary", width=140)
group_selection_button.on_click(load_directory_group)
unload_file_button = Button(label="Unload", button_type="danger", width=50)
unload_file_button.on_click(unload_file)
# files selection box
files_selector = Select(title="Files:", options=[])
files_selector.on_change('value', change_data_selector)
# data selection box
data_selector = MultiSelect(title="Data:", options=[], size=12)
data_selector.on_change('value', select_data)
# x axis selection box
x_axis_selector_title = Div(text="""X Axis:""")
x_axis_selector = RadioButtonGroup(labels=x_axis_options, active=0)
x_axis_selector.on_click(change_x_axis)
# toggle second axis button
toggle_second_axis_button = Button(label="Toggle Second Axis", button_type="success")
toggle_second_axis_button.on_click(toggle_second_axis)
# averaging slider
averaging_slider = Slider(title="Averaging window", start=1, end=101, step=10)
averaging_slider.on_change('value', update_averaging)
# group properties checkbox
group_cb = CheckboxGroup(labels=["Show statistics bands", "Ungroup signals"], active=[])
group_cb.on_click(toggle_group_property)
# title
title = Div(text="""<h1>Coach Dashboard</h1>""")
# landing page
landing_page_description = Div(text="""<h3>Start by selecting an experiment file or directory to open:</h3>""")
center = Div(text="""<style>html { text-align: center; } </style>""")
center_buttons = Div(text="""<style>.bk-grid-row .bk-layout-fixed { margin: 0 auto; }</style>""", width=0)
landing_page = column(center,
title,
landing_page_description,
row(center_buttons),
row(file_selection_button, sizing_mode='scale_width'),
row(group_selection_button, sizing_mode='scale_width'),
sizing_mode='scale_width')
# main layout of the document
layout = row(file_selection_button, files_selector_spacer, group_selection_button, width=300)
layout = column(layout, files_selector)
layout = column(layout, row(refresh_info, unload_file_button))
layout = column(layout, data_selector)
layout = column(layout, x_axis_selector_title)
layout = column(layout, x_axis_selector)
layout = column(layout, group_cb)
layout = column(layout, toggle_second_axis_button)
layout = column(layout, averaging_slider)
layout = column(layout, legend)
layout = row(layout, plot)
layout = column(title, layout)
layout = column(layout, spinner)
doc = curdoc()
doc.add_root(landing_page)
doc.add_periodic_callback(reload_all_files, 20000)
plot.y_range = Range1d(0, 100)
plot.extra_y_ranges['secondary'] = Range1d(0, 100)
# show load file dialog immediately on start
#doc.add_timeout_callback(load_files, 1000)
if __name__ == "__main__":
# find an open port and run the server
import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
port = 12345
while True:
try:
s.bind(("127.0.0.1", port))
break
except socket.error as e:
if e.errno == 98:
port += 1
s.close()
os.system('bokeh serve --show dashboard.py --port {}'.format(port))