1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 03:30:19 +01:00

coach v0.8.0

This commit is contained in:
Gal Leibovich
2017-10-19 13:10:15 +03:00
parent 7f77813a39
commit 1d4c3455e7
123 changed files with 10996 additions and 203 deletions

33
environments/__init__.py Normal file
View File

@@ -0,0 +1,33 @@
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from logger import *
from utils import Enum
from environments.gym_environment_wrapper import *
from environments.doom_environment_wrapper import *
class EnvTypes(Enum):
Doom = "DoomEnvironmentWrapper"
Gym = "GymEnvironmentWrapper"
def create_environment(tuning_parameters):
env_type_name, env_type = EnvTypes().verify(tuning_parameters.env.type)
env = eval(env_type)(tuning_parameters)
return env

View File

@@ -0,0 +1,110 @@
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
try:
import vizdoom
except ImportError:
from logger import failed_imports
failed_imports.append("ViZDoom")
import numpy as np
from environments.environment_wrapper import EnvironmentWrapper
from os import path, environ
from utils import *
# enum of the available levels and their path
class DoomLevel(Enum):
BASIC = "basic.cfg"
DEFEND = "defend_the_center.cfg"
DEATHMATCH = "deathmatch.cfg"
MY_WAY_HOME = "my_way_home.cfg"
TAKE_COVER = "take_cover.cfg"
HEALTH_GATHERING = "health_gathering.cfg"
HEALTH_GATHERING_SUPREME = "health_gathering_supreme.cfg"
DEFEND_THE_LINE = "defend_the_line.cfg"
DEADLY_CORRIDOR = "deadly_corridor.cfg"
class DoomEnvironmentWrapper(EnvironmentWrapper):
def __init__(self, tuning_parameters):
EnvironmentWrapper.__init__(self, tuning_parameters)
# load the emulator with the required level
self.level = DoomLevel().get(self.tp.env.level)
self.scenarios_dir = path.join(environ.get('VIZDOOM_ROOT'), 'scenarios')
self.game = vizdoom.DoomGame()
self.game.load_config(path.join(self.scenarios_dir, self.level))
self.game.set_window_visible(self.is_rendered)
self.game.add_game_args("+vid_forcesurface 1")
if self.is_rendered:
self.game.set_screen_resolution(vizdoom.ScreenResolution.RES_320X240)
else:
# lower resolution since we actually take only 76x60 and we don't need to render
self.game.set_screen_resolution(vizdoom.ScreenResolution.RES_160X120)
self.game.set_render_hud(False)
self.game.set_render_crosshair(False)
self.game.set_render_decals(False)
self.game.set_render_particles(False)
self.game.init()
self.action_space_abs_range = 0
self.actions = {}
self.action_space_size = self.game.get_available_buttons_size()
for action_idx in range(self.action_space_size):
self.actions[action_idx] = [0] * self.action_space_size
self.actions[action_idx][action_idx] = 1
self.actions_description = [str(action) for action in self.game.get_available_buttons()]
self.measurements_size = self.game.get_state().game_variables.shape
self.width = self.game.get_screen_width()
self.height = self.game.get_screen_height()
if self.tp.seed is not None:
self.game.set_seed(self.tp.seed)
self.reset()
def _update_observation_and_measurements(self):
# extract all data from the current state
state = self.game.get_state()
if state is not None and state.screen_buffer is not None:
self.observation = self._preprocess_observation(state.screen_buffer)
self.measurements = state.game_variables
self.done = self.game.is_episode_finished()
def step(self, action_idx):
self.reward = 0
for frame in range(self.tp.env.frame_skip):
self.reward += self.game.make_action(self._idx_to_action(action_idx))
self._update_observation_and_measurements()
if self.done:
break
return {'observation': self.observation,
'reward': self.reward,
'done': self.done,
'action': action_idx,
'measurements': self.measurements}
def _preprocess_observation(self, observation):
if observation is None:
return None
# move the channel to the last axis
observation = np.transpose(observation, (1, 2, 0))
return observation
def _restart_environment_episode(self, force_environment_reset=False):
self.game.new_episode()

View File

@@ -0,0 +1,138 @@
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
from utils import *
from configurations import Preset
class EnvironmentWrapper:
def __init__(self, tuning_parameters):
"""
:param tuning_parameters:
:type tuning_parameters: Preset
"""
# env initialization
self.game = []
self.actions = {}
self.observation = []
self.reward = 0
self.done = False
self.last_action_idx = 0
self.measurements = []
self.action_space_low = 0
self.action_space_high = 0
self.action_space_abs_range = 0
self.discrete_controls = True
self.action_space_size = 0
self.width = 1
self.height = 1
self.is_state_type_image = True
self.measurements_size = 0
self.phase = RunPhase.TRAIN
self.tp = tuning_parameters
self.record_video_every = self.tp.visualization.record_video_every
self.env_id = self.tp.env.level
self.video_path = self.tp.visualization.video_path
self.is_rendered = self.tp.visualization.render
self.seed = self.tp.seed
self.frame_skip = self.tp.env.frame_skip
def _update_observation_and_measurements(self):
# extract all the available measurments (ovservation, depthmap, lives, ammo etc.)
pass
def _restart_environment_episode(self, force_environment_reset=False):
"""
:param force_environment_reset: Force the environment to reset even if the episode is not done yet.
:return:
"""
pass
def _idx_to_action(self, action_idx):
"""
Convert an action index to one of the environment available actions.
For example, if the available actions are 4,5,6 then this function will map 0->4, 1->5, 2->6
:param action_idx: an action index between 0 and self.action_space_size - 1
:return: the action corresponding to the requested index
"""
return self.actions[action_idx]
def _preprocess_observation(self, observation):
"""
Do initial observation preprocessing such as cropping, rgb2gray, rescale etc.
:param observation: a raw observation from the environment
:return: the preprocessed observation
"""
pass
def step(self, action_idx):
"""
Perform a single step on the environment using the given action
:param action_idx: the action to perform on the environment
:return: A dictionary containing the observation, reward, done flag, action and measurements
"""
pass
def render(self):
"""
Call the environment function for rendering to the screen
"""
pass
def reset(self, force_environment_reset=False):
"""
Reset the environment and all the variable of the wrapper
:param force_environment_reset: forces environment reset even when the game did not end
:return: A dictionary containing the observation, reward, done flag, action and measurements
"""
self._restart_environment_episode(force_environment_reset)
self.done = False
self.reward = 0.0
self.last_action_idx = 0
self._update_observation_and_measurements()
return {'observation': self.observation,
'reward': self.reward,
'done': self.done,
'action': self.last_action_idx,
'measurements': self.measurements}
def get_random_action(self):
"""
Returns an action picked uniformly from the available actions
:return: a numpy array with a random action
"""
if self.discrete_controls:
return np.random.choice(self.action_space_size)
else:
return np.random.uniform(self.action_space_low, self.action_space_high)
def change_phase(self, phase):
"""
Change the current phase of the run.
This is useful when different behavior is expected when testing and training
:param phase: The running phase of the algorithm
:type phase: RunPhase
"""
self.phase = phase
def get_rendered_image(self):
"""
Return a numpy array containing the image that will be rendered to the screen.
This can be different from the observation. For example, mujoco's observation is a measurements vector.
:return: numpy array containing the image that will be rendered to the screen
"""
return self.observation

View File

@@ -0,0 +1,172 @@
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import sys
import gym
import numpy as np
try:
import roboschool
from OpenGL import GL
except ImportError:
from logger import failed_imports
failed_imports.append("RoboSchool")
try:
from gym_extensions.continuous import mujoco
except:
from logger import failed_imports
failed_imports.append("GymExtensions")
try:
import pybullet_envs
except ImportError:
from logger import failed_imports
failed_imports.append("PyBullet")
from gym import wrappers
from utils import force_list, RunPhase
from environments.environment_wrapper import EnvironmentWrapper
i = 0
class GymEnvironmentWrapper(EnvironmentWrapper):
def __init__(self, tuning_parameters):
EnvironmentWrapper.__init__(self, tuning_parameters)
ports = (5200, 15200)
# env parameters
self.env = gym.make(self.env_id)
self.env_id = self.env_id
if self.seed is not None:
self.env.seed(self.seed)
self.env_spec = gym.spec(self.env_id)
self.none_counter = 0
self.discrete_controls = type(self.env.action_space) != gym.spaces.box.Box
# pybullet requires rendering before resetting the environment, but other gym environments (Pendulum) will crash
try:
if self.is_rendered:
self.render()
except:
pass
o = self.reset(True)['observation']
# render
if self.is_rendered:
self.render()
# self.env.render()
self.is_state_type_image = len(o.shape) > 1
if self.is_state_type_image:
self.width = o.shape[1]
self.height = o.shape[0]
else:
self.width = o.shape[0]
self.actions_description = {}
if self.discrete_controls:
self.action_space_size = self.env.action_space.n
self.action_space_abs_range = 0
else:
self.action_space_size = self.env.action_space.shape[0]
self.action_space_high = self.env.action_space.high
self.action_space_low = self.env.action_space.low
self.action_space_abs_range = np.maximum(np.abs(self.action_space_low), np.abs(self.action_space_high))
self.actions = {i: i for i in range(self.action_space_size)}
self.timestep_limit = self.env.spec.timestep_limit
self.current_ale_lives = 0
self.measurements_size = len(self.step(0)['info'].keys())
# env intialization
self.observation = o
self.reward = 0
self.done = False
self.last_action = self.actions[0]
def render(self):
self.env.render()
def step(self, action_idx):
if action_idx is None:
action_idx = self.last_action_idx
self.last_action_idx = action_idx
if self.discrete_controls:
action = self.actions[action_idx]
else:
action = action_idx
if hasattr(self.env.env, 'ale'):
prev_ale_lives = self.env.env.ale.lives()
# pendulum-v0 for example expects a list
if not self.discrete_controls:
# catching cases where the action for continuous control is a number instead of a list the
# size of the action space
if type(action_idx) == int and action_idx == 0:
# deal with the "reset" action 0
action = [0] * self.env.action_space.shape[0]
action = np.array(force_list(action))
# removing redundant dimensions such that the action size will match the expected action size from gym
if action.shape != self.env.action_space.shape:
action = np.squeeze(action)
action = np.clip(action, self.action_space_low, self.action_space_high)
self.observation, self.reward, self.done, self.info = self.env.step(action)
if hasattr(self.env.env, 'ale') and self.phase == RunPhase.TRAIN:
# signal termination for breakout life loss
if prev_ale_lives != self.env.env.ale.lives():
self.done = True
if any(env in self.env_id for env in ["Breakout", "Pong"]):
# crop image
self.observation = self.observation[34:195, :, :]
if self.is_rendered:
self.render()
return {'observation': self.observation,
'reward': self.reward,
'done': self.done,
'action': self.last_action_idx,
'info': self.info}
def _restart_environment_episode(self, force_environment_reset=False):
# prevent reset of environment if there are ale lives left
if "Breakout" in self.env_id and self.env.env.ale.lives() > 0 and not force_environment_reset:
return self.observation
if self.seed:
self.env.seed(self.seed)
observation = self.env.reset()
while observation is None:
observation = self.step(0)['observation']
if "Breakout" in self.env_id:
# crop image
observation = observation[34:195, :, :]
self.observation = observation
return observation
def get_rendered_image(self):
return self.env.render(mode='rgb_array')