mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 03:30:19 +01:00
coach v0.8.0
This commit is contained in:
48
exploration_policies/boltzmann.py
Normal file
48
exploration_policies/boltzmann.py
Normal file
@@ -0,0 +1,48 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from exploration_policies.exploration_policy import *
|
||||
|
||||
|
||||
class Boltzmann(ExplorationPolicy):
|
||||
def __init__(self, tuning_parameters):
|
||||
"""
|
||||
:param tuning_parameters: A Preset class instance with all the running paramaters
|
||||
:type tuning_parameters: Preset
|
||||
"""
|
||||
ExplorationPolicy.__init__(self, tuning_parameters)
|
||||
self.temperature = tuning_parameters.exploration.initial_temperature
|
||||
self.final_temperature = tuning_parameters.exploration.final_temperature
|
||||
self.temperature_decay_delta = (
|
||||
tuning_parameters.exploration.initial_temperature - tuning_parameters.exploration.final_temperature) \
|
||||
/ float(tuning_parameters.exploration.temperature_decay_steps)
|
||||
|
||||
def decay_temperature(self):
|
||||
if self.temperature > self.final_temperature:
|
||||
self.temperature -= self.temperature_decay_delta
|
||||
|
||||
def get_action(self, action_values):
|
||||
if self.phase == RunPhase.TRAIN:
|
||||
self.decay_temperature()
|
||||
# softmax calculation
|
||||
exp_probabilities = np.exp(action_values / self.temperature)
|
||||
probabilities = exp_probabilities / np.sum(exp_probabilities)
|
||||
probabilities[-1] = 1 - np.sum(probabilities[:-1]) # make sure probs sum to 1
|
||||
# choose actions according to the probabilities
|
||||
return np.random.choice(range(self.action_space_size), p=probabilities)
|
||||
|
||||
def get_control_param(self):
|
||||
return self.temperature
|
||||
Reference in New Issue
Block a user