mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
coach v0.8.0
This commit is contained in:
70
exploration_policies/e_greedy.py
Normal file
70
exploration_policies/e_greedy.py
Normal file
@@ -0,0 +1,70 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from exploration_policies.exploration_policy import *
|
||||
|
||||
|
||||
class EGreedy(ExplorationPolicy):
|
||||
def __init__(self, tuning_parameters):
|
||||
"""
|
||||
:param tuning_parameters: A Preset class instance with all the running paramaters
|
||||
:type tuning_parameters: Preset
|
||||
"""
|
||||
ExplorationPolicy.__init__(self, tuning_parameters)
|
||||
self.epsilon = tuning_parameters.exploration.initial_epsilon
|
||||
self.final_epsilon = tuning_parameters.exploration.final_epsilon
|
||||
self.epsilon_decay_delta = (
|
||||
tuning_parameters.exploration.initial_epsilon - tuning_parameters.exploration.final_epsilon) \
|
||||
/ float(tuning_parameters.exploration.epsilon_decay_steps)
|
||||
self.evaluation_epsilon = tuning_parameters.exploration.evaluation_epsilon
|
||||
|
||||
# for continuous e-greedy (see http://www.cs.ubc.ca/~van/papers/2017-TOG-deepLoco/2017-TOG-deepLoco.pdf)
|
||||
self.variance = tuning_parameters.exploration.initial_noise_variance_percentage
|
||||
self.final_variance = tuning_parameters.exploration.final_noise_variance_percentage
|
||||
self.decay_steps = tuning_parameters.exploration.noise_variance_decay_steps
|
||||
self.variance_decay_delta = (self.variance - self.final_variance) / float(self.decay_steps)
|
||||
|
||||
def decay_exploration(self):
|
||||
# decay epsilon
|
||||
if self.epsilon > self.final_epsilon:
|
||||
self.epsilon -= self.epsilon_decay_delta
|
||||
elif self.epsilon < self.final_epsilon:
|
||||
self.epsilon = self.final_epsilon
|
||||
|
||||
# decay noise variance
|
||||
if not self.discrete_controls:
|
||||
if self.variance > self.final_variance:
|
||||
self.variance -= self.variance_decay_delta
|
||||
elif self.variance < self.final_variance:
|
||||
self.variance = self.final_variance
|
||||
|
||||
def get_action(self, action_values):
|
||||
if self.phase == RunPhase.TRAIN:
|
||||
self.decay_exploration()
|
||||
epsilon = self.evaluation_epsilon if self.phase == RunPhase.TEST else self.epsilon
|
||||
|
||||
if self.discrete_controls:
|
||||
top_action = np.argmax(action_values)
|
||||
if np.random.rand() < epsilon:
|
||||
return np.random.randint(self.action_space_size)
|
||||
else:
|
||||
return top_action
|
||||
else:
|
||||
noise = np.random.randn(1, self.action_space_size) * self.variance * self.action_abs_range
|
||||
return np.squeeze(action_values + (np.random.rand() < epsilon) * noise)
|
||||
|
||||
def get_control_param(self):
|
||||
return self.epsilon
|
||||
Reference in New Issue
Block a user