mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
coach v0.8.0
This commit is contained in:
52
exploration_policies/ou_process.py
Normal file
52
exploration_policies/ou_process.py
Normal file
@@ -0,0 +1,52 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import numpy as np
|
||||
from exploration_policies.exploration_policy import *
|
||||
|
||||
# Based on on the description in:
|
||||
# https://math.stackexchange.com/questions/1287634/implementing-ornstein-uhlenbeck-in-matlab
|
||||
|
||||
# Ornstein-Uhlenbeck process
|
||||
class OUProcess(ExplorationPolicy):
|
||||
def __init__(self, tuning_parameters):
|
||||
"""
|
||||
:param tuning_parameters: A Preset class instance with all the running paramaters
|
||||
:type tuning_parameters: Preset
|
||||
"""
|
||||
ExplorationPolicy.__init__(self, tuning_parameters)
|
||||
self.action_space_size = tuning_parameters.env.action_space_size
|
||||
self.mu = float(tuning_parameters.exploration.mu) * np.ones(self.action_space_size)
|
||||
self.theta = tuning_parameters.exploration.theta
|
||||
self.sigma = float(tuning_parameters.exploration.sigma) * np.ones(self.action_space_size)
|
||||
self.state = np.zeros(self.action_space_size)
|
||||
self.dt = tuning_parameters.exploration.dt
|
||||
|
||||
def reset(self):
|
||||
self.state = np.zeros(self.action_space_size)
|
||||
|
||||
def noise(self):
|
||||
x = self.state
|
||||
dx = self.theta * (self.mu - x) * self.dt + self.sigma * np.random.randn(len(x)) * np.sqrt(self.dt)
|
||||
self.state = x + dx
|
||||
return self.state[0]
|
||||
|
||||
def get_action(self, action_values):
|
||||
noise = self.noise()
|
||||
return action_values.squeeze() + noise
|
||||
|
||||
def get_control_param(self):
|
||||
return self.state[0]
|
||||
Reference in New Issue
Block a user