mirror of
https://github.com/gryf/coach.git
synced 2026-02-15 13:35:55 +01:00
coach v0.8.0
This commit is contained in:
19
memories/__init__.py
Normal file
19
memories/__init__.py
Normal file
@@ -0,0 +1,19 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from memories.differentiable_neural_dictionary import *
|
||||
from memories.episodic_experience_replay import *
|
||||
from memories.memory import *
|
||||
173
memories/differentiable_neural_dictionary.py
Normal file
173
memories/differentiable_neural_dictionary.py
Normal file
@@ -0,0 +1,173 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import numpy as np
|
||||
from annoy import AnnoyIndex
|
||||
|
||||
|
||||
class AnnoyDictionary:
|
||||
def __init__(self, dict_size, key_width, new_value_shift_coefficient=0.1, batch_size=100, key_error_threshold=0.01):
|
||||
self.max_size = dict_size
|
||||
self.curr_size = 0
|
||||
self.new_value_shift_coefficient = new_value_shift_coefficient
|
||||
|
||||
self.index = AnnoyIndex(key_width, metric='euclidean')
|
||||
self.index.set_seed(1)
|
||||
|
||||
self.embeddings = np.zeros((dict_size, key_width))
|
||||
self.values = np.zeros(dict_size)
|
||||
|
||||
self.lru_timestamps = np.zeros(dict_size)
|
||||
self.current_timestamp = 0.0
|
||||
|
||||
# keys that are in this distance will be considered as the same key
|
||||
self.key_error_threshold = key_error_threshold
|
||||
|
||||
self.initial_update_size = batch_size
|
||||
self.min_update_size = self.initial_update_size
|
||||
self.key_dimension = key_width
|
||||
self.value_dimension = 1
|
||||
self._reset_buffer()
|
||||
|
||||
self.built_capacity = 0
|
||||
|
||||
def add(self, keys, values):
|
||||
# Adds new embeddings and values to the dictionary
|
||||
indices = []
|
||||
indices_to_remove = []
|
||||
for i in range(keys.shape[0]):
|
||||
index = self._lookup_key_index(keys[i])
|
||||
if index:
|
||||
# update existing value
|
||||
self.values[index] += self.new_value_shift_coefficient * (values[i] - self.values[index])
|
||||
self.lru_timestamps[index] = self.current_timestamp
|
||||
indices_to_remove.append(i)
|
||||
else:
|
||||
# add new
|
||||
if self.curr_size >= self.max_size:
|
||||
# find the LRU entry
|
||||
index = np.argmin(self.lru_timestamps)
|
||||
else:
|
||||
index = self.curr_size
|
||||
self.curr_size += 1
|
||||
self.lru_timestamps[index] = self.current_timestamp
|
||||
indices.append(index)
|
||||
|
||||
for i in reversed(indices_to_remove):
|
||||
keys = np.delete(keys, i, 0)
|
||||
values = np.delete(values, i, 0)
|
||||
|
||||
self.buffered_keys = np.vstack((self.buffered_keys, keys))
|
||||
self.buffered_values = np.vstack((self.buffered_values, values))
|
||||
self.buffered_indices = self.buffered_indices + indices
|
||||
|
||||
if len(self.buffered_indices) >= self.min_update_size:
|
||||
self.min_update_size = max(self.initial_update_size, int(self.curr_size * 0.02))
|
||||
self._rebuild_index()
|
||||
|
||||
self.current_timestamp += 1
|
||||
|
||||
# Returns the stored embeddings and values of the closest embeddings
|
||||
def query(self, keys, k):
|
||||
_, indices = self._get_k_nearest_neighbors_indices(keys, k)
|
||||
|
||||
embeddings = []
|
||||
values = []
|
||||
for ind in indices:
|
||||
self.lru_timestamps[ind] = self.current_timestamp
|
||||
embeddings.append(self.embeddings[ind])
|
||||
values.append(self.values[ind])
|
||||
|
||||
self.current_timestamp += 1
|
||||
|
||||
return embeddings, values
|
||||
|
||||
def has_enough_entries(self, k):
|
||||
return self.curr_size > k and (self.built_capacity > k)
|
||||
|
||||
def _get_k_nearest_neighbors_indices(self, keys, k):
|
||||
distances = []
|
||||
indices = []
|
||||
for key in keys:
|
||||
index, distance = self.index.get_nns_by_vector(key, k, include_distances=True)
|
||||
distances.append(distance)
|
||||
indices.append(index)
|
||||
return distances, indices
|
||||
|
||||
def _rebuild_index(self):
|
||||
self.index.unbuild()
|
||||
self.embeddings[self.buffered_indices] = self.buffered_keys
|
||||
self.values[self.buffered_indices] = np.squeeze(self.buffered_values)
|
||||
for idx, key in zip(self.buffered_indices, self.buffered_keys):
|
||||
self.index.add_item(idx, key)
|
||||
|
||||
self._reset_buffer()
|
||||
|
||||
self.index.build(50)
|
||||
self.built_capacity = self.curr_size
|
||||
|
||||
def _reset_buffer(self):
|
||||
self.buffered_keys = np.zeros((0, self.key_dimension))
|
||||
self.buffered_values = np.zeros((0, self.value_dimension))
|
||||
self.buffered_indices = []
|
||||
|
||||
def _lookup_key_index(self, key):
|
||||
distance, index = self._get_k_nearest_neighbors_indices([key], 1)
|
||||
if distance != [[]] and distance[0][0] <= self.key_error_threshold:
|
||||
return index
|
||||
return None
|
||||
|
||||
|
||||
class QDND:
|
||||
def __init__(self, dict_size, key_width, num_actions, new_value_shift_coefficient=0.1, key_error_threshold=0.01):
|
||||
self.num_actions = num_actions
|
||||
self.dicts = []
|
||||
|
||||
# create a dict for each action
|
||||
for a in range(num_actions):
|
||||
new_dict = AnnoyDictionary(dict_size, key_width, new_value_shift_coefficient, key_error_threshold=key_error_threshold)
|
||||
self.dicts.append(new_dict)
|
||||
|
||||
def add(self, embeddings, actions, values):
|
||||
# add a new set of embeddings and values to each of the underlining dictionaries
|
||||
embeddings = np.array(embeddings)
|
||||
actions = np.array(actions)
|
||||
values = np.array(values)
|
||||
for a in range(self.num_actions):
|
||||
idx = np.where(actions == a)
|
||||
curr_action_embeddings = embeddings[idx]
|
||||
curr_action_values = np.expand_dims(values[idx], -1)
|
||||
|
||||
self.dicts[a].add(curr_action_embeddings, curr_action_values)
|
||||
return True
|
||||
|
||||
def query(self, embeddings, actions, k):
|
||||
# query for nearest neighbors to the given embeddings
|
||||
dnd_embeddings = []
|
||||
dnd_values = []
|
||||
for i, action in enumerate(actions):
|
||||
embedding, value = self.dicts[action].query([embeddings[i]], k)
|
||||
dnd_embeddings.append(embedding[0])
|
||||
dnd_values.append(value[0])
|
||||
|
||||
return dnd_embeddings, dnd_values
|
||||
|
||||
def has_enough_entries(self, k):
|
||||
# check if each of the action dictionaries has at least k entries
|
||||
for a in range(self.num_actions):
|
||||
if not self.dicts[a].has_enough_entries(k):
|
||||
return False
|
||||
return True
|
||||
161
memories/episodic_experience_replay.py
Normal file
161
memories/episodic_experience_replay.py
Normal file
@@ -0,0 +1,161 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from memories.memory import *
|
||||
import threading
|
||||
|
||||
|
||||
class EpisodicExperienceReplay(Memory):
|
||||
def __init__(self, tuning_parameters):
|
||||
"""
|
||||
:param tuning_parameters: A Preset class instance with all the running paramaters
|
||||
:type tuning_parameters: Preset
|
||||
"""
|
||||
Memory.__init__(self, tuning_parameters)
|
||||
self.tp = tuning_parameters
|
||||
self.max_size_in_episodes = tuning_parameters.agent.num_episodes_in_experience_replay
|
||||
self.max_size_in_transitions = tuning_parameters.agent.num_transitions_in_experience_replay
|
||||
self.discount = tuning_parameters.agent.discount
|
||||
self.buffer = [Episode()] # list of episodes
|
||||
self.transitions = []
|
||||
self._length = 1
|
||||
self._num_transitions = 0
|
||||
self._num_transitions_in_complete_episodes = 0
|
||||
self.return_is_bootstrapped = tuning_parameters.agent.bootstrap_total_return_from_old_policy
|
||||
|
||||
def length(self):
|
||||
""" Get the number of episodes in the ER (even if they are not complete) """
|
||||
if self._length is not 0 and self.buffer[-1].is_empty():
|
||||
return self._length - 1
|
||||
return self._length
|
||||
|
||||
def num_complete_episodes(self):
|
||||
""" Get the number of complete episodes in ER """
|
||||
return self._length - 1
|
||||
|
||||
def num_transitions(self):
|
||||
return self._num_transitions
|
||||
|
||||
def num_transitions_in_complete_episodes(self):
|
||||
return self._num_transitions_in_complete_episodes
|
||||
|
||||
def sample_episode(self):
|
||||
episode_idx = np.random.randint(self.num_complete_episodes())
|
||||
return self.buffer[episode_idx]
|
||||
|
||||
def sample_n_episodes(self, n):
|
||||
num_n_episodes = (self.num_complete_episodes()) / n
|
||||
assert num_n_episodes > 0, \
|
||||
'Tried sampling {} episodes when only {} completed episodes are available in the memory' \
|
||||
.format(n, self.num_complete_episodes())
|
||||
start_episode_idx = np.random.randint(num_n_episodes) * n
|
||||
return self.buffer[start_episode_idx:(start_episode_idx + n)]
|
||||
|
||||
def sample_last_n_episodes(self, n):
|
||||
num_n_episodes = (self.num_complete_episodes()) / n
|
||||
assert num_n_episodes > 0, \
|
||||
'Tried sampling {} episodes when only {} completed episodes are available in the memory' \
|
||||
.format(n, self.num_complete_episodes())
|
||||
start_episode_idx = -n
|
||||
return self.buffer[start_episode_idx:(start_episode_idx + n)]
|
||||
|
||||
def sample(self, size):
|
||||
assert self.num_transitions_in_complete_episodes() > size, \
|
||||
'There are not enough transitions in the replay buffer'
|
||||
batch = []
|
||||
transitions_idx = np.random.randint(self.num_transitions_in_complete_episodes(), size=size)
|
||||
for i in transitions_idx:
|
||||
batch.append(self.transitions[i])
|
||||
|
||||
return batch
|
||||
|
||||
def enforce_length(self):
|
||||
# clean up if necessary
|
||||
if self.max_size_in_transitions is not None:
|
||||
while self.max_size_in_transitions != 0 and self.num_transitions() > self.max_size_in_transitions:
|
||||
self.remove_episode(0)
|
||||
else:
|
||||
while self.length() > self.max_size_in_episodes:
|
||||
self.remove_episode(0)
|
||||
|
||||
def store(self, transition):
|
||||
if len(self.buffer) == 0:
|
||||
self.buffer.append(Episode())
|
||||
last_episode = self.buffer[-1]
|
||||
last_episode.insert(transition)
|
||||
self.transitions.append(transition)
|
||||
self._num_transitions += 1
|
||||
if transition.game_over:
|
||||
self._num_transitions_in_complete_episodes += last_episode.length()
|
||||
self._length += 1
|
||||
self.buffer[-1].update_returns(self.discount, is_bootstrapped=self.return_is_bootstrapped,
|
||||
n_step_return=self.tp.agent.n_step)
|
||||
self.buffer[-1].update_measurements_targets(self.tp.agent.num_predicted_steps_ahead)
|
||||
# self.buffer[-1].update_actions_probabilities() # used for off-policy policy optimization
|
||||
self.buffer.append(Episode())
|
||||
|
||||
self.enforce_length()
|
||||
|
||||
def insert_full_episode(self, episode):
|
||||
# Do not add a new episode if the last one is not closed yet
|
||||
if self.buffer[-1].get_last_transition().done != True:
|
||||
return False
|
||||
|
||||
episode.update_returns(self.discount)
|
||||
episode.update_measurements_targets(self.tp.agent.num_predicted_steps_ahead)
|
||||
self.buffer.append(episode)
|
||||
self.transitions += episode.transitions
|
||||
self._length += 1
|
||||
self._num_transitions += episode.length()
|
||||
|
||||
self.enforce_length()
|
||||
|
||||
return True
|
||||
|
||||
def get_episode(self, episode_index):
|
||||
if self.length() == 0:
|
||||
return None
|
||||
episode = self.buffer[episode_index]
|
||||
return episode
|
||||
|
||||
def remove_episode(self, episode_index):
|
||||
if len(self.buffer) > episode_index:
|
||||
episode_length = self.buffer[episode_index].length()
|
||||
self._length -= 1
|
||||
self._num_transitions -= episode_length
|
||||
self._num_transitions_in_complete_episodes -= episode_length
|
||||
del self.transitions[:episode_length]
|
||||
del self.buffer[episode_index]
|
||||
|
||||
# for API compatibility
|
||||
def get(self, index):
|
||||
return self.get_episode(index)
|
||||
|
||||
def update_last_transition_info(self, info):
|
||||
episode = self.buffer[-1]
|
||||
if episode.length() == 0:
|
||||
if len(self.buffer) < 2:
|
||||
return
|
||||
episode = self.buffer[-2]
|
||||
for key, val in info.items():
|
||||
episode.transitions[-1].info[key] = val
|
||||
|
||||
def clean(self):
|
||||
self.transitions = []
|
||||
self.buffer = [Episode()]
|
||||
self._length = 1
|
||||
self._num_transitions = 0
|
||||
self._num_transitions_in_complete_episodes = 0
|
||||
135
memories/memory.py
Normal file
135
memories/memory.py
Normal file
@@ -0,0 +1,135 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import numpy as np
|
||||
import copy
|
||||
from configurations import *
|
||||
|
||||
|
||||
class Memory:
|
||||
def __init__(self, tuning_parameters):
|
||||
"""
|
||||
:param tuning_parameters: A Preset class instance with all the running paramaters
|
||||
:type tuning_parameters: Preset
|
||||
"""
|
||||
pass
|
||||
|
||||
def store(self, obj):
|
||||
pass
|
||||
|
||||
def get(self, index):
|
||||
pass
|
||||
|
||||
def length(self):
|
||||
pass
|
||||
|
||||
def sample(self, size):
|
||||
pass
|
||||
|
||||
def clean(self):
|
||||
pass
|
||||
|
||||
|
||||
class Episode:
|
||||
def __init__(self):
|
||||
self.transitions = []
|
||||
# a num_transitions x num_transitions table with the n step return in the n'th row
|
||||
self.returns_table = None
|
||||
self._length = 0
|
||||
|
||||
def insert(self, transition):
|
||||
self.transitions.append(transition)
|
||||
self._length += 1
|
||||
|
||||
def is_empty(self):
|
||||
return self.length() == 0
|
||||
|
||||
def length(self):
|
||||
return self._length
|
||||
|
||||
def get_transition(self, transition_idx):
|
||||
return self.transitions[transition_idx]
|
||||
|
||||
def get_last_transition(self):
|
||||
return self.get_transition(-1)
|
||||
|
||||
def get_first_transition(self):
|
||||
return self.get_transition(0)
|
||||
|
||||
def update_returns(self, discount, is_bootstrapped=False, n_step_return=-1):
|
||||
if n_step_return == -1 or n_step_return > self.length():
|
||||
n_step_return = self.length()
|
||||
rewards = np.array([t.reward for t in self.transitions])
|
||||
total_return = rewards.copy()
|
||||
current_discount = discount
|
||||
for i in range(1, n_step_return):
|
||||
total_return += current_discount * np.pad(rewards[i:], (0, i), 'constant', constant_values=0)
|
||||
current_discount *= discount
|
||||
|
||||
if is_bootstrapped:
|
||||
bootstraps = np.array([np.squeeze(t.info['action_value']) for t in self.transitions[n_step_return:]])
|
||||
total_return += current_discount * np.pad(bootstraps, (0, n_step_return), 'constant', constant_values=0)
|
||||
|
||||
for transition_idx in range(self.length()):
|
||||
self.transitions[transition_idx].total_return = total_return[transition_idx]
|
||||
|
||||
def update_measurements_targets(self, num_steps):
|
||||
if 'measurements' not in self.transitions[0].state:
|
||||
return
|
||||
measurements_size = self.transitions[0].state['measurements'].shape[-1]
|
||||
total_return = sum([transition.reward for transition in self.transitions])
|
||||
for transition_idx, transition in enumerate(self.transitions):
|
||||
transition.info['future_measurements'] = np.zeros((num_steps, measurements_size))
|
||||
for step in range(num_steps):
|
||||
offset_idx = transition_idx + 2 ** step
|
||||
if offset_idx >= self.length():
|
||||
offset_idx = -1
|
||||
transition.info['future_measurements'][step] = self.transitions[offset_idx].next_state['measurements'] - \
|
||||
transition.state['measurements']
|
||||
transition.info['total_episode_return'] = total_return
|
||||
|
||||
def update_actions_probabilities(self):
|
||||
probability_product = 1
|
||||
for transition_idx, transition in enumerate(self.transitions):
|
||||
if 'action_probabilities' in transition.info.keys():
|
||||
probability_product *= transition.info['action_probabilities']
|
||||
for transition_idx, transition in enumerate(self.transitions):
|
||||
transition.info['probability_product'] = probability_product
|
||||
|
||||
def get_returns_table(self):
|
||||
return self.returns_table
|
||||
|
||||
def get_returns(self):
|
||||
return [t.total_return for t in self.transitions]
|
||||
|
||||
def to_batch(self):
|
||||
batch = []
|
||||
for i in range(self.length()):
|
||||
batch.append(self.get_transition(i))
|
||||
return batch
|
||||
|
||||
|
||||
class Transition:
|
||||
def __init__(self, state, action, reward, next_state, game_over):
|
||||
self.state = copy.deepcopy(state)
|
||||
self.state['observation'] = np.array(self.state['observation'], copy=False)
|
||||
self.action = action
|
||||
self.reward = reward
|
||||
self.total_return = None
|
||||
self.next_state = copy.deepcopy(next_state)
|
||||
self.next_state['observation'] = np.array(self.next_state['observation'], copy=False)
|
||||
self.game_over = game_over
|
||||
self.info = {}
|
||||
Reference in New Issue
Block a user